Characterization of the shape stability for nonlinear elliptic problems

作者: Dorin Bucur

DOI: 10.1016/J.JDE.2005.11.004

关键词: Type (model theory)Nonlinear systemMathematical analysisUniform boundednessUniform convergenceMathematicsSpace (mathematics)Dirichlet boundary conditionHausdorff spaceOpen set

摘要: Abstract We characterize all geometric perturbations of an open set, for which the solution a nonlinear elliptic PDE p-Laplacian type with Dirichlet boundary condition is stable in L ∞ -norm. The necessary and sufficient conditions are jointly expressed by property associated to γ p -convergence. If dimension N space satisfies − 1 ⩽ if number connected components complements moving domains uniformly bounded, simple characterization uniform convergence can be derived purely frame, terms Hausdorff complementary convergence. Several examples presented.

参考文章(21)
H. Attouch, Variational convergence for functions and operators Pitman Advanced Pub. Program. ,(1984)
O. Martio, Juha Heinonen, Tero Kilpeläinen, Nonlinear Potential Theory of Degenerate Elliptic Equations ,(1993)
Giuseppe Buttazzo, Dorin Bucur, Variational Methods in some Shape Optimization Problems Scuola Normale Superiore. pp. 1- 217 ,(2002)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Dorin Bucur, Characterization for the Kuratowski Limits of a Sequence of Sobolev Spaces Journal of Differential Equations. ,vol. 151, pp. 1- 19 ,(1999) , 10.1006/JDEQ.1998.3497
Markus Biegert, Daniel Daners, Local and global uniform convergence for elliptic problems on varying domains Journal of Differential Equations. ,vol. 223, pp. 1- 32 ,(2006) , 10.1016/J.JDE.2005.07.015
Gianni Dal Maso, Umberto Mosco, Wiener's criterion and Γ-convergence Applied Mathematics and Optimization. ,vol. 15, pp. 15- 63 ,(1987) , 10.1007/BF01442645
D. Bucur, J.P. Zolesio, N-Dimensional Shape Optimization under Capacitary Constraint Journal of Differential Equations. ,vol. 123, pp. 504- 522 ,(1995) , 10.1006/JDEQ.1995.1171
H.F Weinberger, On a nonlinear eigenvalue problem Journal of Mathematical Analysis and Applications. ,vol. 21, pp. 506- 509 ,(1968) , 10.1016/0022-247X(68)90259-X