作者: Dorin Bucur
DOI: 10.1016/J.JDE.2005.11.004
关键词: Type (model theory) 、 Nonlinear system 、 Mathematical analysis 、 Uniform boundedness 、 Uniform convergence 、 Mathematics 、 Space (mathematics) 、 Dirichlet boundary condition 、 Hausdorff space 、 Open set
摘要: Abstract We characterize all geometric perturbations of an open set, for which the solution a nonlinear elliptic PDE p-Laplacian type with Dirichlet boundary condition is stable in L ∞ -norm. The necessary and sufficient conditions are jointly expressed by property associated to γ p -convergence. If dimension N space satisfies − 1 ⩽ if number connected components complements moving domains uniformly bounded, simple characterization uniform convergence can be derived purely frame, terms Hausdorff complementary convergence. Several examples presented.