Fan Realizations of Type $$A$$A Subword Complexes and Multi-associahedra of Rank 3

作者: Jean-Philippe Labbé , Cesar Ceballos , Nantel Bergeron

DOI: 10.1007/S00454-015-9691-0

关键词:

摘要: We present complete simplicial fan realizations of any spherical subword complex type $$A_n$$An for $$n\le 3$$n≤3. This provides multi-associahedra $$\varDelta _{2k+4,k}$$Δ2k+4,k, whose facets are in correspondence with $$k$$k-triangulations a convex $$(2k+4)$$(2k+4)-gon. solves the first open case problem finding where polytopality is not known. also two previously unknown cases complexes $$A_4$$A4, namely _{9,2}$$Δ9,2 and _{11,3}$$Δ11,3.

参考文章(33)
Francesco Brenti, Anders Björner, Combinatorics of Coxeter Groups ,(2010)
Jesus A. De Loera, Francisco Santos, Jorg Rambau, Triangulations: Structures for Algorithms and Applications ,(2010)
B. Shapiro, M. Shapiro, A. Vainshtein, Connected Components in the Intersection of Two Open Opposite Schubert Cells in SLn(ℝ)/B International Mathematics Research Notices. ,vol. 1997, pp. 469- 493 ,(1997) , 10.1155/S1073792897000329
Luis Serrano, Christian Stump, Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials Electronic Journal of Combinatorics. ,vol. 19, pp. 16- ,(2012) , 10.37236/1167
Jürgen Richter-Gebert, Realization Spaces of Polytopes ,(1996)
JACQUES TITS, Le problème des mots dans les groupes de Coxeter Symposia Mathematica. ,vol. 1, pp. 175- 185 ,(1969) , 10.1016/B978-1-4832-2995-9.50013-1
Vincent Pilaud, Christian Stump, BRICK POLYTOPES OF SPHERICAL SUBWORD COMPLEXES: A NEW APPROACH TO GENERALIZED ASSOCIAHEDRA arXiv: Combinatorics. ,(2011)
Cesar Ceballos, Günter M. Ziegler, Realizing the associahedron: Mysteries and questions arXiv: Combinatorics. pp. 119- 127 ,(2012) , 10.1007/978-3-0348-0405-9_7
Günter Rote, Francisco Santos, Ileana Streinu, Expansive Motions and the Polytope of Pointed Pseudo-Triangulations Algorithms and Combinatorics. pp. 699- 736 ,(2003) , 10.1007/978-3-642-55566-4_33