Subword complexes via triangulations of root polytopes

作者: Laura Escobar , Karola Mészáros

DOI: 10.5802/ALCO.17

关键词:

摘要: Subword complexes are simplicial introduced by Knutson and Miller to illustrate the combinatorics of Schubert polynomials determinantal ideals. They proved that any subword complex is homeomorphic a ball or sphere asked about their geometric realizations. We show family can be realized geometrically via regular triangulations root polytopes. This implies $\beta$-Grothendieck special cases reduced forms in subdivision algebra also write volume Ehrhart series polytopes terms polynomials.

参考文章(20)
Luis Serrano, Christian Stump, Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials Electronic Journal of Combinatorics. ,vol. 19, pp. 16- ,(2012) , 10.37236/1167
Israel M. Gelfand, Mark I. Graev, Alexander Postnikov, Combinatorics of hypergeometric functions associated with positive roots Birkhäuser Boston. pp. 205- 221 ,(1997) , 10.1007/978-1-4612-4122-5_10
Vincent Pilaud, Michel Pocchiola, Multitriangulations, Pseudotriangulations and Primitive Sorting Networks Discrete & Computational Geometry. ,vol. 48, pp. 142- 191 ,(2012) , 10.1007/S00454-012-9408-6
Karola Mészáros, Pipe Dream Complexes and Triangulations of Root Polytopes Belong Together SIAM Journal on Discrete Mathematics. ,vol. 30, pp. 100- 111 ,(2016) , 10.1137/15M1014802
Jean-Philippe Labbé, Cesar Ceballos, Nantel Bergeron, Fan Realizations of Type $$A$$A Subword Complexes and Multi-associahedra of Rank 3 Discrete and Computational Geometry. ,vol. 54, pp. 195- 231 ,(2015) , 10.1007/S00454-015-9691-0
Nantel Bergeron, Sara Billey, RC-Graphs and Schubert Polynomials Experimental Mathematics. ,vol. 2, pp. 257- 269 ,(1993) , 10.1080/10586458.1993.10504567
Cesar Ceballos, Jean-Philippe Labbé, Christian Stump, Subword complexes, cluster complexes, and generalized multi-associahedra Journal of Algebraic Combinatorics. ,vol. 39, pp. 17- 51 ,(2014) , 10.1007/S10801-013-0437-X
Karola Mészáros, Product formulas for volumes of flow polytopes Proceedings of the American Mathematical Society. ,vol. 143, pp. 937- 954 ,(2014) , 10.1090/S0002-9939-2014-12182-4
Allen Knutson, Ezra Miller, Subword complexes in Coxeter groups Advances in Mathematics. ,vol. 184, pp. 161- 176 ,(2004) , 10.1016/S0001-8708(03)00142-7
Vincent Pilaud, Francisco Santos, The brick polytope of a sorting network The Journal of Combinatorics. ,vol. 33, pp. 632- 662 ,(2012) , 10.1016/J.EJC.2011.12.003