BRICK POLYTOPES OF SPHERICAL SUBWORD COMPLEXES: A NEW APPROACH TO GENERALIZED ASSOCIAHEDRA

作者: Vincent Pilaud , Christian Stump

DOI:

关键词: PolytopeClass (set theory)CombinatoricsCoxeter groupBrickMathematicsMatroidVertex (geometry)Minkowski addition

摘要: We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for nite Coxeter groups. This construction pro- vides polytopal realizations a certain class containing all cluster types. For latter, polytopes turn out coincide with known generalized associahedra, thus opening new perspectives on these constructions. approach yields in particular vertex description Minkowski sum decomposition them into matroid polytopes.

参考文章(35)
Christophe Hohlweg, Permutahedra and Associahedra Birkhäuser, Basel. pp. 129- 159 ,(2012) , 10.1007/978-3-0348-0405-9_8
Christophe Hohlweg, Jonathan Lortie, Annie Raymond, The centers of gravity of the associahedron and of the permutahedron are the same Electronic Journal of Combinatorics. ,vol. 17, pp. 72- ,(2010) , 10.37236/344
Vincent Pilaud, Christian Stump, EL-labelings and canonical spanning trees for subword complexes Discrete Mathematics & Theoretical Computer Science. pp. 213- 248 ,(2013) , 10.1007/978-3-319-00200-2_13
Francisco Santos, Ileana Streinu, Guenter Rote, Pseudo-Triangulations - a Survey arXiv: Combinatorics. ,(2006)
Günter Rote, Francisco Santos, Ileana Streinu, Expansive Motions and the Polytope of Pointed Pseudo-Triangulations Algorithms and Combinatorics. pp. 699- 736 ,(2003) , 10.1007/978-3-642-55566-4_33
Vincent Pilaud, Christian Stump, Vertex barycenter of generalized associahedra Proceedings of the American Mathematical Society. ,vol. 143, pp. 2623- 2636 ,(2015) , 10.1090/S0002-9939-2015-12357-X
Nathan Reading, Sortable elements and Cambrian lattices Algebra Universalis. ,vol. 56, pp. 411- 437 ,(2007) , 10.1007/S00012-007-2009-1
Nathan Reading, David E. Speyer, Sortable elements in infinite Coxeter groups Transactions of the American Mathematical Society. ,vol. 363, pp. 699- 761 ,(2011) , 10.1090/S0002-9947-2010-05050-0
Christophe Hohlweg, Carsten E.M.C. Lange, Realizations of the Associahedron and Cyclohedron Discrete and Computational Geometry. ,vol. 37, pp. 517- 543 ,(2007) , 10.1007/S00454-007-1319-6
Allen Knutson, Ezra Miller, Subword complexes in Coxeter groups Advances in Mathematics. ,vol. 184, pp. 161- 176 ,(2004) , 10.1016/S0001-8708(03)00142-7