The greedy flip tree of a subword complex

作者: Vincent Pilaud

DOI:

关键词:

摘要: We describe a canonical spanning tree of the ridge graph subword complex on finite Coxeter group. It is based properties greedy facets in complexes, defined and studied this paper. Searching yields an enumeration scheme for complex. This algorithm extends flip pointed pseudotriangulations points or convex bodies plane.

参考文章(12)
Francisco Santos, Ileana Streinu, Guenter Rote, Pseudo-Triangulations - a Survey arXiv: Combinatorics. ,(2006)
Vincent Pilaud, Christian Stump, BRICK POLYTOPES OF SPHERICAL SUBWORD COMPLEXES: A NEW APPROACH TO GENERALIZED ASSOCIAHEDRA arXiv: Combinatorics. ,(2011)
Allen Knutson, Ezra Miller, Subword complexes in Coxeter groups Advances in Mathematics. ,vol. 184, pp. 161- 176 ,(2004) , 10.1016/S0001-8708(03)00142-7
Hervé Brönnimann, Lutz Kettner, Michel Pocchiola, Jack Snoeyink, Counting and Enumerating Pointed Pseudotriangulations with the Greedy Flip Algorithm SIAM Journal on Computing. ,vol. 36, pp. 721- 739 ,(2006) , 10.1137/050631008
Vincent Pilaud, Francisco Santos, Multitriangulations as Complexes of Star Polygons Discrete and Computational Geometry. ,vol. 41, pp. 284- 317 ,(2009) , 10.1007/S00454-008-9078-6
Nathan Reading, Clusters, Coxeter-sortable elements and noncrossing partitions Transactions of the American Mathematical Society. ,vol. 359, pp. 5931- 5958 ,(2007) , 10.1090/S0002-9947-07-04319-X
Allen Knutson, Ezra Miller, Gröbner geometry of Schubert polynomials Annals of Mathematics. ,vol. 161, pp. 1245- 1318 ,(2005) , 10.4007/ANNALS.2005.161.1245
M. Pocchiola, G. Vegter, Topologically sweeping visibility complexes via pseudotriangulations Discrete & Computational Geometry. ,vol. 16, pp. 419- 453 ,(1996) , 10.1007/BF02712876
R. W. Carter, REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) Bulletin of the London Mathematical Society. ,vol. 23, pp. 505- 506 ,(1991) , 10.1112/BLMS/23.5.505
Vincent Pilaud, Christian Stump, Brick polytopes of spherical subword complexes and generalized associahedra arXiv: Combinatorics. ,(2011)