Plykin type attractor in electronic device simulated in MULTISIM.

作者: Sergey P. Kuznetsov

DOI: 10.1063/1.3646903

关键词:

摘要: An electronic device is suggested representing a non-autonomous dynamical system with hyperbolic chaotic attractor of Plykin type in the stroboscopic map, and results its simulation software package NI MULTISIM are considered comparison numerical integration underlying differential equations. A main practical advantage devices this kind their structural stability that means insensitivity dynamics respect to variations functions parameters elements constituting as well interferences noises.

参考文章(41)
José María Amigó, None, Chaos-Based Cryptography Intelligent Computing Based on Chaos. pp. 291- 313 ,(2009) , 10.1007/978-3-540-95972-4_14
M. I. Rabinovich, D. I. Trubet︠s︡kov, Oscillations and Waves: in Linear and Nonlinear Systems ,(1989)
Sze-Bi Hsu, Valentin Afraimovich, Lectures on Chaotic Dynamical Systems ,(2002)
C.A. Morales, Lorenz attractor through saddle-node bifurcations Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 13, pp. 589- 617 ,(1996) , 10.1016/S0294-1449(16)30116-0
Analog Circuit Design Analog Circuit Design. pp. 27- 30 ,(2005) , 10.1007/978-1-4020-2805-2
S. Ė. Khaĭkin, Vitt, A. A. , d., Wilfred Fishwick, F. Immirzi, A. A. (Aleksandr Aleksandrovich) Andronov, Theory of Oscillators ,(1966)
James L. Kaplan, James A. Yorke, Chaotic behavior of multidimensional difference equations Springer, Berlin, Heidelberg. pp. 204- 227 ,(1979) , 10.1007/BFB0064319
V.S Anishchenko, A.S Kopeikin, J Kurths, T.E Vadivasova, G.I Strelkova, Studying hyperbolicity in chaotic systems Physics Letters A. ,vol. 270, pp. 301- 307 ,(2000) , 10.1016/S0375-9601(00)00338-8
Y -C Lai, C Grebogi, J A Yorke, I Kan, How often are chaotic saddles nonhyperbolic Nonlinearity. ,vol. 6, pp. 779- 797 ,(1993) , 10.1088/0951-7715/6/5/007
Sergey P. Kuznetsov, Plykin-Type attractor in nonautonomous coupled oscillators. Chaos. ,vol. 19, pp. 013114- ,(2009) , 10.1063/1.3072777