Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation

作者: Yong-Sheng Tao , Jing-Song He , K. Porsezian

DOI: 10.1088/1674-1056/22/7/074210

关键词:

摘要: We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrodinger equation (INLSE) to construct deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, obtained first-order deformed solution, which is derived from breather solution through Taylor expansion, different known (NLSE). The effect inhomogeneity fully reflected in variable height soliton curved background wave. By suitably adjusting physical parameter, we show that a desired shape can be generated. In particular, newly constructed reduced corresponding under suitable parametric condition.

参考文章(47)
VB Matveev, MA Salle, Darboux transformations and solitons ,(1992)
Zhenya Yan, Financial rogue waves arXiv: Pricing of Securities. ,(2009) , 10.1088/0253-6102/54/5/31
Jingsong He, Ling Zhang, Yi Cheng, Yishen Li, Determinant representation of Darboux transformation for the AKNS system Science in China Series A: Mathematics. ,vol. 49, pp. 1867- 1878 ,(2006) , 10.1007/S11425-006-2025-1
Jin-Xi Fei, Chun-Long Zheng, Exact solutions and localized excitations of a (3+1)-dimensional Gross—Pitaevskii system Chinese Physics B. ,vol. 21, pp. 070304- ,(2012) , 10.1088/1674-1056/21/7/070304
Yu. V. Bludov, V. V. Konotop, N. Akhmediev, Matter rogue waves Physical Review A. ,vol. 80, pp. 033610- ,(2009) , 10.1103/PHYSREVA.80.033610
Burkard Baschek, Jennifer Imai, Rogue Wave Observations Off the US West Coast Oceanography. ,vol. 24, pp. 158- 165 ,(2011) , 10.5670/OCEANOG.2011.35
V. N. Serkin, Akira Hasegawa, T. L. Belyaeva, Nonautonomous solitons in external potentials. Physical Review Letters. ,vol. 98, pp. 074102- 074102 ,(2007) , 10.1103/PHYSREVLETT.98.074102