The actin cortex at a glance.

作者: Priyamvada Chugh , Ewa K. Paluch

DOI: 10.1242/JCS.186254

关键词:

摘要: Precisely controlled cell deformations are key to migration, division and tissue morphogenesis, have been implicated in differentiation during development, as well cancer progression. In animal cells, shape changes primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath plasma membrane. Myosin-generated forces create tension cortical network, gradients lead deformations. Recent studies provided important insight into molecular control of progressively unveiling cortex composition organization. this Cell Science at Glance article accompanying poster, we review our current understanding architecture. We then discuss how microscopic properties tension. While many open questions remain, it is now clear can be modulated through both organization, providing multiple levels regulation for property morphogenesis.

参考文章(155)
M. Mayer, G. Salbreux, S.W. Grill, Biophysics of Cell Developmental Processes: A Lasercutter's Perspective Reference Module in Life Sciences#R##N#Comprehensive Biophysics. ,vol. 7, pp. 194- 207 ,(2012) , 10.1016/B978-0-12-374920-8.00715-3
Arnab Saha, Masatoshi Nishikawa, Martin Behrndt, Carl-Philipp Heisenberg, Frank Jülicher, Stephan W. Grill, Determining Physical Properties of the Cell Cortex. Biophysical Journal. ,vol. 110, pp. 1421- 1429 ,(2016) , 10.1016/J.BPJ.2016.02.013
Akankshi Munjal, Jean-Marc Philippe, Edwin Munro, Thomas Lecuit, A self-organized biomechanical network drives shape changes during tissue morphogenesis Nature. ,vol. 524, pp. 351- 355 ,(2015) , 10.1038/NATURE14603
Cornelius Kronlage, Marco Schäfer-Herte, Daniel Böning, Hans Oberleithner, Johannes Fels, Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium Biophysical Journal. ,vol. 109, pp. 687- 698 ,(2015) , 10.1016/J.BPJ.2015.06.066
Jean-Léon Maître, Ritsuya Niwayama, Hervé Turlier, François Nédélec, Takashi Hiiragi, Pulsatile cell-autonomous contractility drives compaction in the mouse embryo Nature Cell Biology. ,vol. 17, pp. 849- 855 ,(2015) , 10.1038/NCB3185
Michael Murrell, Patrick W. Oakes, Martin Lenz, Margaret L. Gardel, Forcing cells into shape: the mechanics of actomyosin contractility Nature Reviews Molecular Cell Biology. ,vol. 16, pp. 486- 498 ,(2015) , 10.1038/NRM4012
Rainer Matzke, Ken Jacobson, Manfred Radmacher, Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biology. ,vol. 3, pp. 607- 610 ,(2001) , 10.1038/35078583
R. Zaidel-Bar, G. Zhenhuan, C. Luxenburg, The contractome--a systems view of actomyosin contractility in non-muscle cells Journal of Cell Science. ,vol. 128, pp. 2209- 2217 ,(2015) , 10.1242/JCS.170068
Nelio T. L. Rodrigues, Sergey Lekomtsev, Silvana Jananji, Janos Kriston-Vizi, Gilles R. X. Hickson, Buzz Baum, Kinetochore-localized PP1–Sds22 couples chromosome segregation to polar relaxation Nature. ,vol. 524, pp. 489- 492 ,(2015) , 10.1038/NATURE14496