Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations.

作者: Pengfei Zhang , Jacopo Mocci , Daniel J. Wahl , Ratheesh Kumar Meleppat , Suman K. Manna

DOI: 10.1016/J.EXER.2018.03.027

关键词:

摘要: For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements eye (cornea lens) serve objective for most systems, use lens, even 0 Dpt. power, can alter system's optical properties. In this investigation we examined effective focal length change aberrations that arise from lens. First, changes were simulated Zemax model. Then ocular without measured Shack-Hartmann wavefront sensor (SHWS) customized AO-SLO system. Total RMS errors two groups mice (14-month, 2.5-month-old), decomposed into 66 Zernike aberration terms, compared. These data revealed vertical coma spherical increased our Based on evaluated effect system performance function pupil size. Both error Strehl ratios quantified mice, lenses, different input beam sizes. results provide information determining optimum size adaptive optics, raise critical issues design systems incorporate lenses.

参考文章(40)
Robert J. Zawadzki, Pengfei Zhang, Azhar Zam, Eric B. Miller, Mayank Goswami, Xinlei Wang, Ravi S. Jonnal, Sang-Hyuck Lee, Dae Yu Kim, John G. Flannery, John S. Werner, Marie E. Burns, Edward N. Pugh, Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomedical Optics Express. ,vol. 6, pp. 2191- 2210 ,(2015) , 10.1364/BOE.6.002191
A. Guevara-Torres, D. R. Williams, J. B. Schallek, Imaging translucent cell bodies in the living mouse retina without contrast agents. Biomedical Optics Express. ,vol. 6, pp. 2106- 2119 ,(2015) , 10.1364/BOE.6.002106
Nathan D. Shemonski, Fredrick A. South, Yuan-Zhi Liu, Steven G. Adie, P. Scott Carney, Stephen A. Boppart, Computational high-resolution optical imaging of the living human retina Nature Photonics. ,vol. 9, pp. 440- 443 ,(2015) , 10.1038/NPHOTON.2015.102
Chang-Jin Jeon, Enrica Strettoi, Richard H. Masland, The major cell populations of the mouse retina. The Journal of Neuroscience. ,vol. 18, pp. 8936- 8946 ,(1998) , 10.1523/JNEUROSCI.18-21-08936.1998
Gurinder Bawa, Tatiana V. Tkatchenko, Ivan Avrutsky, Andrei V. Tkatchenko, Variational analysis of the mouse and rat eye optical parameters. Biomedical Optics Express. ,vol. 4, pp. 2585- 2595 ,(2013) , 10.1364/BOE.4.002585
Lewis C. Roberts, Jr., Marshall D. Perrin, Franck Marchis, Anand Sivaramakrishnan, Russell B. Makidon, Julian C. Christou, Bruce A. Macintosh, Lisa A. Poyneer, Marcos A. van Dam, Mitchell Troy, Is that really your Strehl ratio Proceedings of SPIE. ,vol. 5490, pp. 504- 515 ,(2004) , 10.1117/12.549115
Ying Geng, Alfredo Dubra, Lu Yin, William H. Merigan, Robin Sharma, Richard T. Libby, David R. Williams, Adaptive optics retinal imaging in the living mouse eye Biomedical Optics Express. ,vol. 3, pp. 715- 734 ,(2012) , 10.1364/BOE.3.000715
Vivek J. Srinivasan, Tony H. Ko, Maciej Wojtkowski, Mariana Carvalho, Allen Clermont, Sven-Erik Bursell, Qin Hui Song, Janis Lem, Jay S. Duker, Joel S. Schuman, James G. Fujimoto, Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Investigative Ophthalmology & Visual Science. ,vol. 47, pp. 5522- 5528 ,(2006) , 10.1167/IOVS.06-0195
Michel Paques, Manuel Simonutti, Michel J. Roux, Serge Picaud, Etienne Levavasseur, Caren Bellman, José-Alain Sahel, High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse Vision Research. ,vol. 46, pp. 1336- 1345 ,(2006) , 10.1016/J.VISRES.2005.09.037