Data-driven spatialbvalue estimation with applications to California seismicity: Tobor not tob

作者: Yavor Kamer , Stefan Hiemer

DOI: 10.1002/2014JB011510

关键词:

摘要: In this paper we present a penalized likelihood-based method for spatial estimation of Gutenberg-Richter's b value. Our incorporates nonarbitrary partitioning scheme based on Voronoi tessellation, which allows the optimal space using minimum number free parameters. By random placement an increasing nodes, are able to explore whole solution in terms model complexity. We obtain overall likelihood each by estimating values all regions and calculating its joint Aki's formula. Accounting parameters, then calculate Bayesian Information Criterion realizations. investigate ensemble best performing models demonstrate robustness validity our through extensive synthetic tests. apply seismicity California two different time spans Advanced National Seismic System catalog (1984–2014 2004–2014). The results show that last decade, value variation well-instrumented parts mainland is limited range (0.94 ± 0.04–1.15 ± 0.06). Apart from Geysers region, observed can be explained network-related discrepancies magnitude estimations. suggest previously reported variations obtained classical fixed radius or nearest neighbor methods likely have been overestimated, mainly due subjective parameter choices. envision selection criteria used study useful tool generating improved earthquake forecasting models.

参考文章(81)
Keiiti Aki, 17. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits 東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo. ,vol. 43, pp. 237- 239 ,(1965)
S. Wiemer, N. Umino, M. Wyss, A. Hasegawa, Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1off-Sanriku earthquake, Japan Annals of Geophysics. ,vol. 42, pp. 851- 869 ,(1999) , 10.4401/AG-3765
Georges Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal). ,vol. 1908, pp. 198- 287 ,(1908) , 10.1515/CRLL.1908.134.198
Serge A. Shapiro, Oliver S. Krüger, Carsten Dinske, Probability of inducing given‐magnitude earthquakes by perturbing finite volumes of rocks Journal of Geophysical Research. ,vol. 118, pp. 3557- 3575 ,(2013) , 10.1002/JGRB.50264
Yan Y. Kagan, Earthquake size distribution: power-law with exponent beta=1/2 ? Tectonophysics. ,vol. 490, pp. 103- 114 ,(2010) , 10.1016/J.TECTO.2010.04.034
Peter Bird, An updated digital model of plate boundaries Geochemistry Geophysics Geosystems. ,vol. 4, pp. 1027- ,(2003) , 10.1029/2001GC000252
T. Tormann, S. Wiemer, A. Mignan, Systematic survey of high‐resolution b value imaging along Californian faults: Inference on asperities Journal of Geophysical Research. ,vol. 119, pp. 2029- 2054 ,(2014) , 10.1002/2013JB010867
C. E. Bachmann, S. Wiemer, B. P. Goertz-Allmann, J. Woessner, Influence of pore-pressure on the event-size distribution of induced earthquakes Geophysical Research Letters. ,vol. 39, ,(2012) , 10.1029/2012GL051480
C. H. Scholz, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes Bulletin of the Seismological Society of America. ,vol. 58, pp. 399- 415 ,(1968)
Bruce A. Bolt, Yaolin Shi, The standard error of the magnitude-frequency b value Bulletin of the Seismological Society of America. ,vol. 72, pp. 1677- 1687 ,(1982)