Application of optimal control theory to analysis of cancer chemotherapy regimens

作者: Alexey S. Matveev , Andrey V. Savkin

DOI: 10.1016/S0167-6911(02)00134-2

关键词:

摘要: Cancer chemotherapy with application of one drug is studied. The negative and inhibiting effect the tumor on normal cells taken into account. Under certain assumptions, we determine optimal regimen that minimizes burden at end a fixed period therapy while maintaining cell population above prescribed level.

参考文章(13)
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
J.M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit. Bellman Prize in Mathematical Biosciences. ,vol. 100, pp. 49- 67 ,(1990) , 10.1016/0025-5564(90)90047-3
S.I. Rubinow, J.L. Lebowitz, A mathematical model of the acute myeloblastic leukemic state in man Biophysical Journal. ,vol. 16, pp. 897- 910 ,(1976) , 10.1016/S0006-3495(76)85740-2
M.I.S. Costa, J.L. Boldrini, R.C. Bassanezi, Drug kinetics and drug resistance in optimal chemotherapy Mathematical Biosciences. ,vol. 125, pp. 191- 209 ,(1995) , 10.1016/0025-5564(94)00027-W
Evans K. Afenya, Daniel E. Bentil, Some perspectives on modeling leukemia Bellman Prize in Mathematical Biosciences. ,vol. 150, pp. 113- 130 ,(1998) , 10.1016/S0025-5564(98)10005-6
S.I. Rubinow, J.L. Lebowitz, A mathematical model of the chemotherapeutic treatment of acute myeloblastic leukemia Biophysical Journal. ,vol. 16, pp. 1257- 1271 ,(1976) , 10.1016/S0006-3495(76)85772-4
S ZIETZ, C NICOLINI, Mathematical approaches to optimization of cancer chemotherapy Bulletin of Mathematical Biology. ,vol. 41, pp. 305- 324 ,(1979) , 10.1016/S0092-8240(79)90014-4