Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization

作者: Ye Wang , Michael Orshansky , Constantine Caramanis

DOI: 10.1145/2593069.2593131

关键词:

摘要: The challenge of equation-based analog synthesis comes from its dual nature: functions producing good least-square fits to SPICE-generated data are non-convex, hence not amenable efficient optimization. In this paper, we leverage recent progress on Semidefinite Programming (SDP) relaxations polynomial (non-convex) Using a general allows for much more accurate fitting SPICE compared the restricted functional forms. Recent SDP techniques convex optimizations powerful but alone still insufficient: even small problems, resulting prohibitively high dimensional.We harness these new tools and realize their promise by introducing novel regression technique that non-convex polynomials with special sparsity structure. We show coupled sparse optimization (CSFO) flow introduce us find high-order while keeping tractable.Using established circuits experiments, demonstrate handling higher-order reduce error 3.6% 10%, average. This translates into dramatic increase in rate constraint satisfaction: 1% violation threshold, success is increased 0% 78%.

参考文章(17)
Jintae Kim, Jaeseo Lee, Lieven Vandenberghe, Chih-Kong Ken Yang, None, Techniques for improving the accuracy of geometric-programming based analog circuit design optimization international conference on computer aided design. pp. 863- 870 ,(2004) , 10.1109/ICCAD.2004.1382695
Jean B. Lasserre, Global Optimization with Polynomials and the Problem of Moments Siam Journal on Optimization. ,vol. 11, pp. 796- 817 ,(2000) , 10.1137/S1052623400366802
Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert, Group lasso with overlap and graph lasso Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09. pp. 433- 440 ,(2009) , 10.1145/1553374.1553431
Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Muramatsu, Hiroshi Sugimoto, Algorithm 883 ACM Transactions on Mathematical Software. ,vol. 35, pp. 1- 13 ,(2008) , 10.1145/1377612.1377619
Hing-Kit Kwan, Ngai Wong, Siu-Hong Lui, Analog circuit design by nonconvex polynomial optimization: Two design examples International Journal of Circuit Theory and Applications. ,vol. 38, pp. 25- 43 ,(2010) , 10.1002/CTA.V38:1
Sunyoung Kim, Masakazu Kojima, Hayato Waki, Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems Siam Journal on Optimization. ,vol. 15, pp. 697- 719 ,(2005) , 10.1137/030601260
Jean B. Lasserre, Convergent SDP-Relaxations in Polynomial Optimization with Sparsity Siam Journal on Optimization. ,vol. 17, pp. 822- 843 ,(2006) , 10.1137/05064504X
Michael Krasnicki, Rodney Phelps, Rob A. Rutenbar, L. Richard Carley, MAELSTROM: efficient simulation-based synthesis for custom analog cells design automation conference. pp. 945- 950 ,(1999) , 10.1145/309847.310104
Ashish Kumar Singh, Kareem Ragab, Mario Lok, Constantine Caramanis, Michael Orshansky, Predictable Equation-Based Analog Optimization Based on Explicit Capture of Modeling Error Statistics IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. ,vol. 31, pp. 1485- 1498 ,(2012) , 10.1109/TCAD.2012.2199115
A. S. Bandeira, K. Scheinberg, L. N. Vicente, Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization Mathematical Programming. ,vol. 134, pp. 223- 257 ,(2012) , 10.1007/S10107-012-0578-Z