An efficient optimal normal basis type II multiplier

作者: Berk Sunar , Cetin Kaya Koc

DOI: 10.1109/12.902754

关键词:

摘要: This paper presents a new parallel multiplier for the Galois field GF(2/sup m/) whose elements are represented using optimal normal basis of type II. The proposed requires 1.5(m/sup 2/-m) XOR gates, as compared to 2(m/sup gates required by Massey-Omura multiplier. time complexities and multipliers similar.

参考文章(7)
Daqing Wan, Alfred J Menezes, Ian F Blake, Xuhong Gao, Ronald C Mullin, Scott A Vanstone, Tomik Yaghoobian, Applications of Finite Fields ,(1992)
Rudolf Lidl, Harald Niederreiter, Introduction to finite fields and their applications The Mathematical Gazette. ,vol. 72, pp. 335- ,(1986) , 10.1017/CBO9781139172769
Edoardo D. Mastrovito, Vlsi designs for multiplication over finite fields GF(2m) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. pp. 297- 309 ,(1989) , 10.1007/3-540-51083-4_67
Toshiya Itoh, Shigeo Tsujii, Structure of parallel multipliers for a class of fields GF(2 m ) Information & Computation. ,vol. 83, pp. 21- 40 ,(1989) , 10.1016/0890-5401(89)90045-X
M.A. Hasan, M.Z. Wang, V.K. Bhargava, A modified Massey-Omura parallel multiplier for a class of finite fields IEEE Transactions on Computers. ,vol. 42, pp. 1278- 1280 ,(1993) , 10.1109/12.257715
Cetin Kaya Koc, Berk Sunar, Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields IEEE Transactions on Computers. ,vol. 47, pp. 353- 356 ,(1998) , 10.1109/12.660172