Oscillation-Based Test applied to cell culture monitoring

作者: Gloria Huertas , Andres Maldonado , Alberto Yufera , Adoracion Rueda , Jose Luis Huertas

DOI: 10.1109/ICSENS.2013.6688339

关键词:

摘要: A method for cell-culture real-time monitoring by means of Oscillation-Based Test (OBT) technique is proposed. The idea inspired in previous works from the authors area testing analogue integrated circuits and deals with solving some critical points this kind biological measurements. simple topology based on a non-linear element feedback loop employed converting Cell-Culture Under (CCUT) into suitable “biological” oscillator. Then, oscillator parameters (frequency, amplitude, phase, etc...) are used as empirical markers to carry out an appropriate interpretation terms cell size identification, counting, growth, etc. Describing Function (DF) approach employed, involved mathematical calculations analysis “biological circuit”, predicting frequency amplitude oscillations. precise values oscillation closely related cell-electrode overlap cell-culture.

参考文章(11)
Paula Daza, Alberto Olmo, Daniel Cañete, Alberto Yúfera, Monitoring living cell assays with bio-impedance sensors Sensors and Actuators B: Chemical. ,vol. 176, pp. 605- 610 ,(2013) , 10.1016/J.SNB.2012.09.083
P.E. Fleischer, A. Ganesan, K.R. Laker, A switched capacitor oscillator with precision amplitude control and guaranteed start-up IEEE Journal of Solid-state Circuits. ,vol. 20, pp. 641- 647 ,(1985) , 10.1109/JSSC.1985.1052358
Ivar Giaever, Charles R. Keese, Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture IEEE Transactions on Biomedical Engineering. ,vol. BME-33, pp. 242- 247 ,(1986) , 10.1109/TBME.1986.325896
Alberto Yúfera, Adoración Rueda, Design of a CMOS closed-loop system with applications to bio-impedance measurements Microelectronics Journal. ,vol. 41, pp. 231- 239 ,(2010) , 10.1016/J.MEJO.2010.02.006
J Wissenwasser, M J Vellekoop, R Heer, Signal Generator for Wireless Impedance Monitoring of Microbiological Systems IEEE Transactions on Instrumentation and Measurement. ,vol. 60, pp. 2039- 2046 ,(2011) , 10.1109/TIM.2011.2113127
A. Yufera, A. Rueda, J.M. Munoz, R. Doldan, G. Leger, E.O. Rodriguez-Villegas, A tissue impedance measurement chip for myocardial ischemia detection IEEE Transactions on Circuits and Systems. ,vol. 52, pp. 2620- 2628 ,(2005) , 10.1109/TCSI.2005.857542
X. Huang, D. Nguyen, D.W. Greve, M.M. Domach, Simulation of microelectrode impedance changes due to cell growth IEEE Sensors Journal. ,vol. 4, pp. 576- 583 ,(2004) , 10.1109/JSEN.2004.831302
S.M. Radke, E.C. Alocilja, S.M. Radke, E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection IEEE Sensors Journal. ,vol. 4, pp. 434- 440 ,(2004) , 10.1109/JSEN.2004.830300
R.D. Beach, R.W. Conlan, M.C. Godwin, F. Moussy, Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors IEEE Transactions on Instrumentation and Measurement. ,vol. 54, pp. 61- 72 ,(2005) , 10.1109/TIM.2004.839757