Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics

作者: Angelika S. Rambold , Sarah Cohen , Jennifer Lippincott-Schwartz

DOI: 10.1016/J.DEVCEL.2015.01.029

关键词:

摘要: Fatty acids (FAs) provide cellular energy under starvation, yet how they mobilize and move into mitochondria in starved cells, driving oxidative respiration, is unclear. Here, we clarify this process by visualizing FA trafficking with a fluorescent probe. The labeled accumulated lipid droplets (LDs) well-fed cells but moved from LDs when were starved. Autophagy replenished FAs, increasing LD number over time. Cytoplasmic lipases removed FAs LDs, enabling their transfer mitochondria. This required to be highly fused localized near LDs. When mitochondrial fusion was prevented neither homogeneously distributed within nor became efficiently metabolized. Instead, reassociated fluxed neighboring cells. Thus, engage complex itineraries regulated cytoplasmic lipases, autophagy, dynamics, ensuring maximum metabolism avoidance of toxicity

参考文章(68)
Simon EATON, Morteza POURFARZAM, Kim BARTLETT, The effect of respiratory chain impairment of beta-oxidation in rat heart mitochondria. Biochemical Journal. ,vol. 319, pp. 633- 640 ,(1996) , 10.1042/BJ3190633
N J Watmough, A K Bhuiyan, K Bartlett, H S Sherratt, D M Turnbull, Skeletal muscle mitochondrial β-oxidation. A study of the products of oxidation of [U-14C]hexadecanoate by h.p.l.c. using continuous on-line radiochemical detection Biochemical Journal. ,vol. 253, pp. 541- 547 ,(1988) , 10.1042/BJ2530541
Patrick F. Finn, J. Fred Dice, Proteolytic and lipolytic responses to starvation Nutrition. ,vol. 22, pp. 830- 844 ,(2006) , 10.1016/J.NUT.2006.04.008
Rajat Singh, Youqing Xiang, Yongjun Wang, Kiran Baikati, Ana Maria Cuervo, Yen K Luu, Yan Tang, Jeffrey E Pessin, Gary J Schwartz, Mark J Czaja, None, Autophagy regulates adipose mass and differentiation in mice Journal of Clinical Investigation. ,vol. 119, pp. 3329- 3339 ,(2009) , 10.1172/JCI39228
Erin Currie, Almut Schulze, Rudolf Zechner, Tobias C Walther, Robert V Farese, None, Cellular fatty acid metabolism and cancer Cell Metabolism. ,vol. 18, pp. 153- 161 ,(2013) , 10.1016/J.CMET.2013.05.017
Marcelo O. Dietrich, Zhong-Wu Liu, Tamas L. Horvath, Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity Cell. ,vol. 155, pp. 188- 199 ,(2013) , 10.1016/J.CELL.2013.09.004
Guenter Haemmerle, Tarek Moustafa, Gerald Woelkart, Sabrina Büttner, Albrecht Schmidt, Tineke van de Weijer, Matthijs Hesselink, Doris Jaeger, Petra C Kienesberger, Kathrin Zierler, Renate Schreiber, Thomas Eichmann, Dagmar Kolb, Petra Kotzbeck, Martina Schweiger, Manju Kumari, Sandra Eder, Gabriele Schoiswohl, Nuttaporn Wongsiriroj, Nina M Pollak, Franz P W Radner, Karina Preiss-Landl, Thomas Kolbe, Thomas Rülicke, Burkert Pieske, Michael Trauner, Achim Lass, Robert Zimmermann, Gerald Hoefler, Saverio Cinti, Erin E Kershaw, Patrick Schrauwen, Frank Madeo, Bernd Mayer, Rudolf Zechner, ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1 Nature Medicine. ,vol. 17, pp. 1076- 1085 ,(2011) , 10.1038/NM.2439
Mireille Ouimet, Vivian Franklin, Esther Mak, Xianghai Liao, Ira Tabas, Yves L. Marcel, Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase Cell Metabolism. ,vol. 13, pp. 655- 667 ,(2011) , 10.1016/J.CMET.2011.03.023
Masahiro Shibata, Kentaro Yoshimura, Hirosumi Tamura, Takashi Ueno, Taki Nishimura, Takao Inoue, Mitsuho Sasaki, Masato Koike, Hiroyuki Arai, Eiki Kominami, Yasuo Uchiyama, LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochemical and Biophysical Research Communications. ,vol. 393, pp. 274- 279 ,(2010) , 10.1016/J.BBRC.2010.01.121
Masato Furuhashi, Gökhan S. Hotamisligil, Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature Reviews Drug Discovery. ,vol. 7, pp. 489- 503 ,(2008) , 10.1038/NRD2589