Geometry of the Moment Map for Representations of Quivers

作者: William Crawley-Boevey

DOI: 10.1023/A:1017558904030

关键词:

摘要: We study the moment map associated to cotangent bundle of space representations a quiver, determining when it is flat, and giving stratification its Marsden–Weinstein reductions. In order do this we determine possible dimension vectors simple deformed preprojective algebras. an appendix use algebras give proof much Kac's Theorem on quivers in characteristic zero.

参考文章(18)
Victor G. Kac, Root systems, representations of quivers and invariant theory Lecture Notes in Mathematics. pp. 74- 108 ,(1983) , 10.1007/BFB0063236
Heiko Cassens, Peter Slodowy, On Kleinian Singularities and Quivers Birkhäuser Basel. pp. 263- 288 ,(1998) , 10.1007/978-3-0348-8770-0_14
P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients Journal of Differential Geometry. ,vol. 29, pp. 665- 683 ,(1989) , 10.4310/JDG/1214443066
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras Duke Mathematical Journal. ,vol. 76, pp. 365- 416 ,(1994) , 10.1215/S0012-7094-94-07613-8
Hiraku Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras Journal of the American Mathematical Society. ,vol. 14, pp. 145- 238 ,(2000) , 10.1090/S0894-0347-00-00353-2
Hiraku Nakajima, Quiver varieties and Kac-Moody algebras Duke Mathematical Journal. ,vol. 91, pp. 515- 560 ,(1998) , 10.1215/S0012-7094-98-09120-7
G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras Journal of the American Mathematical Society. ,vol. 4, pp. 365- 421 ,(1991) , 10.1090/S0894-0347-1991-1088333-2
George Bergman, Warren Dicks, Universal derivations and universal ring constructions Pacific Journal of Mathematics. ,vol. 79, pp. 293- 337 ,(1978) , 10.2140/PJM.1978.79.293