Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.

作者: Daniel L. Alge , Tien-Min Gabriel Chu

DOI: 10.1002/JBM.A.32742

关键词:

摘要: This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating pre-set with reactive polymer and then cross-linking the in situ. can be used to reinforce 3D scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as model reinforcing polymer. The compressive strength scaffold comprised orthogonally intersecting beams was increased from 0.31 ± 0.06 MPa 1.65 0.13 PEGDA 600. In addition, mechanical properties reinforced were characterized three molecular weights (200, 400, 600 Da) powder liquid (P/L) ratios (0.8, 1.0, 1.43). Higher weight efficacy, P/L controlled porosity determined extent incorporation. Although increasing incorporation resulted transition brittle, cement-like behavior ductile, polymer-like behavior, maximizing not advantageous. Polymerization shrinkage produced microcracks cement, reduced properties. most effective achieved 1.43 this group, flexural 0.44 0.12 7.04 0.51 MPa, maximum displacement 0.05 0.01 mm 1.44 0.17 mm, work fracture 0.64 0.10 J/m2 677.96 70.88 compared non-reinforced controls. These results effectiveness our method, well its potential for fabricating scaffolds useful bone tissue engineering. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A,

参考文章(33)
HHK Xu, FC Eichmiller, PR Barndt, None, Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 57- 65 ,(2001) , 10.1023/A:1026753020208
A. O. Majekodunmi, S. Deb, J. W. Nicholson, Effect of molecular weight and concentration of poly(acrylic acid) on the formation of a polymeric calcium phosphate cement. Journal of Materials Science: Materials in Medicine. ,vol. 14, pp. 747- 752 ,(2003) , 10.1023/A:1025028119787
M BOHNER, P VAN LANDUYT, H. P MERKLE, J LEMAITRE, Composition effects on the pH of a hydraulic calcium phosphate cement Journal of Materials Science: Materials in Medicine. ,vol. 8, pp. 675- 681 ,(1997) , 10.1023/A:1018583706335
T-M G Chu, John W Halloran, Scott J Hollister, Stephen E Feinberg, None, Hydroxyapatite implants with designed internal architecture. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 471- 478 ,(2001) , 10.1023/A:1011203226053
L.C. Chow, Calcium Phosphate Materials: Reactor Response Advances in Dental Research. ,vol. 2, pp. 181- 186 ,(1988) , 10.1177/08959374880020011201
Uwe Gbureck, Jake E. Barralet, Kerstin Spatz, Liam M. Grover, Roger Thull, Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement Biomaterials. ,vol. 25, pp. 2187- 2195 ,(2004) , 10.1016/J.BIOMATERIALS.2003.08.066
K. Ishikawa, K. Asaoka, Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. Journal of Biomedical Materials Research. ,vol. 29, pp. 1537- 1543 ,(1995) , 10.1002/JBM.820291210
Susan J. Peter, Seth T. Miller, Guoming Zhu, Alan W. Yasko, Antonios G. Mikos, In vivo degradation of a poly(propylene fumarate)/β‐tricalcium phosphate injectable composite scaffold Journal of Biomedical Materials Research. ,vol. 41, pp. 1- 7 ,(1998) , 10.1002/(SICI)1097-4636(199807)41:1<1::AID-JBM1>3.0.CO;2-N
Luís Alberto Dos Santos, Luci Cristina De Oliveira, Eliana Cristina da Silva Rigo, Raul Garcia Carrodéguas, Anselmo Ortega Boschi, Antônio Celso Fonseca de Arruda, None, Fiber Reinforced Calcium Phosphate Cement Artificial Organs. ,vol. 24, pp. 212- 216 ,(2000) , 10.1046/J.1525-1594.2000.06541.X
Scott J Hollister, CY Lin, Eiji Saito, CY Lin, RD Schek, JM Taboas, JM Williams, B Partee, CL Flanagan, A Diggs, EN Wilke, GH Van Lenthe, R Müller, T Wirtz, S Das, SE Feinberg, PH Krebsbach, None, Engineering craniofacial scaffolds Orthodontics & Craniofacial Research. ,vol. 8, pp. 162- 173 ,(2005) , 10.1111/J.1601-6343.2005.00329.X