Locally Conservative Algorithms for Flow

作者: Béatrice Rivière , Mary F. Wheeler

DOI: 10.1016/B978-008043568-8/50002-X

关键词:

摘要:

参考文章(6)
P. A. Raviart, J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems Springer Berlin Heidelberg. pp. 292- 315 ,(1977) , 10.1007/BFB0064470
Béatrice Rivière, Mary F. Wheeler, Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I Computational Geosciences. ,vol. 3, pp. 337- 360 ,(1999) , 10.1023/A:1011591328604
J.Tinsley Oden, Ivo Babuŝka, Carlos Erik Baumann, A DiscontinuoushpFinite Element Method for Diffusion Problems Journal of Computational Physics. ,vol. 146, pp. 491- 519 ,(1998) , 10.1006/JCPH.1998.6032
S. Chippada, C.N. Dawson, M.L. Martínez, M.F. Wheeler, A projection method for constructing a mass conservative velocity field Computer Methods in Applied Mechanics and Engineering. ,vol. 157, pp. 1- 10 ,(1998) , 10.1016/S0045-7825(98)80001-7
E.F. Kaasschieter, Mixed finite elements for accurate particle tracking in saturated groundwater flow Advances in Water Resources. ,vol. 18, pp. 277- 294 ,(1995) , 10.1016/0309-1708(95)00015-B
Clint Dawson, Godunov-mixed methods for advection-diffusion equations in multidimensions SIAM Journal on Numerical Analysis. ,vol. 30, pp. 1315- 1332 ,(1993) , 10.1137/0730068