A comparison between probabilistic and Dempster-Shafer theory approaches to model uncertainty analysis in the performance assessment of radioactive waste repositories.

作者: Piero Baraldi , Enrico Zio

DOI: 10.1111/J.1539-6924.2010.01416.X

关键词:

摘要: Model uncertainty is a primary source of in the assessment performance repositories for disposal nuclear wastes, due to complexity system and large spatial temporal scales involved. This work considers multiple assumptions on behavior corresponding alternative plausible modeling hypotheses. To characterize correctness different hypotheses, opinions experts are treated probabilistically or, alternative, by belief plausibility functions Dempster-Shafer theory. A comparison made with reference flow model evaluation hydraulic head distributions present at radioactive waste repository site. Three assumed available uncertainties associated hydrogeological properties groundwater mechanisms.

参考文章(27)
R.G. Knowlton, P.I. Pohl, N.E. Olague, D.P. Gallegos, C.D. Updegraff, Preliminary Assessment of the Impact of Conceptual Model Uncertainty on Site Performance High Level Radioactive Waste Management. pp. 1469- 1479 ,(1990)
Massé Jean-Rémi, Schwob Cyrille, DE Rocquigny Etienne, Perot Nadia, Kanning Wim, Van Gelder P.h.a.m., Mangeant Fabien, Devictor Nicolas, Limbourg Philipp, Lefebvre Yannick, Castaings William, Tarantola Stefano, Bolado Lavin Ricardo, Uncertainty in Industrial Practice - A Guide to Quantitative Uncertainty Management Wiley-VCH. ,(2008)
A.M. Parsons, N.E. Olague, D.P. Gallegos, Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff Other Information: PBD: Jan 1991. ,(1991) , 10.2172/137993
Cheng Zeng, Baojun Zhao, Peikun He, Support function and objecting function, a new viewpoint to the Dempster-Shafer theory of evidence international conference on signal processing. ,vol. 2, pp. 1475- 1478 ,(2004) , 10.1109/ICOSP.2004.1441606
Philippe Smets, The nature of the unnormalized beliefs encountered in the transferable belief model uncertainty in artificial intelligence. pp. 292- 297 ,(1992) , 10.1016/B978-1-4832-8287-9.50044-X
R.J. Budnitz, G. Apostolakis, D.M. Boore, Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts Other Information: PBD: Apr 1997. ,(1997) , 10.2172/479072
Millett Granger Morgan, Max Henrion, Mitchell Small, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis ,(1990)
Joshua M. Reinert, George E. Apostolakis, Including model uncertainty in risk-informed decision making Annals of Nuclear Energy. ,vol. 33, pp. 354- 369 ,(2006) , 10.1016/J.ANUCENE.2005.11.010
Robert T. Clemen, Robert L. Winkler, Combining Probability Distributions From Experts in Risk Analysis Risk Analysis. ,vol. 19, pp. 187- 203 ,(1999) , 10.1023/A:1006917509560
Frank J. Groen, Ali Mosleh, Foundations of probabilistic inference with uncertain evidence International Journal of Approximate Reasoning. ,vol. 39, pp. 49- 83 ,(2005) , 10.1016/J.IJAR.2004.09.001