Smart polyaniline nanoparticles with thermal and photothermal sensitivity.

作者: Silvestre Bongiovanni Abel , María A Molina , Claudia R Rivarola , Marcelo J Kogan , Cesar A Barbero

DOI: 10.1088/0957-4484/25/49/495602

关键词:

摘要: Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, the presence polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that size obtained depends on stabilizer used, suggesting a mechanism where aggregation molecules arrested adsorption stabilizer. Indeed, polymerization mixture two polymers having different stabilizing capacity (PVP PNIPAM) allows tuning nanoparticles. Stabilization biocompatible PVP, HPC PNIPAM use nanoparticle dispersions biological applications. The stabilized thermosensitive (PNIPAM HPC) aggregate when temperature exceeds phase transition (coil to globule) each (Tpt = 32 °C for or Tpt = 42 HPC). This result suggests an extended coil form necessary avoid aggregation. reversibly restored lowered below Tpt. In way, effect could be used separate from soluble contaminants. On other hand, PANI NPs PVP unaffected change. UV-visible spectroscopy measurements show dispersion changes their spectra pH external solution, small can easily penetrate shell. Near infrared radiation absorbed causing increase which induces collapse polymer shell NPs. reveals it possible locally heat nanoparticles, phenomenon destroy tumor cells cancer therapy dissolve protein aggregates neurodegenerative diseases (e.g. Alzheimer). Moreover, long range control modulate residence inside tissues.

参考文章(37)
Yousuke Ono, Toshiyuki Shikata, Contrary Hydration Behavior of N-Isopropylacrylamide to its Polymer, P(NIPAm), with a Lower Critical Solution Temperature Journal of Physical Chemistry B. ,vol. 111, pp. 1511- 1513 ,(2007) , 10.1021/JP068954K
M. Khan Firoze, Bhupendra S. Kaphalia, Paul J. Boor, G. A. S. Ansari, Subchronic toxicity of aniline hydrochloride in rats Archives of Environmental Contamination and Toxicology. ,vol. 24, pp. 368- 374 ,(1993) , 10.1007/BF01128736
Shabnam Virji, Jiaxing Huang, Richard B. Kaner, Bruce H. Weiller, Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms Nano Letters. ,vol. 4, pp. 491- 496 ,(2004) , 10.1021/NL035122E
Jaroslav Stejskal, Irina Sapurina, Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report) Pure and Applied Chemistry. ,vol. 77, pp. 815- 826 ,(2005) , 10.1351/PAC200577050815
Rodolfo Cruz-Silva, Layza Arizmendi, Mayela Del-Angel, Jorge Romero-Garcia, pH- and thermosensitive polyaniline colloidal particles prepared by enzymatic polymerization. Langmuir. ,vol. 23, pp. 8- 12 ,(2007) , 10.1021/LA0618418
C. Dispenza, M. Leone, C.Lo. Presti, F. Librizzi, G. Spadaro, V. Vetri, Optical properties of biocompatible polyaniline nano-composites Journal of Non-crystalline Solids. ,vol. 352, pp. 3835- 3840 ,(2006) , 10.1016/J.JNONCRYSOL.2006.06.017
A. K. Gaharwar, J. E. Wong, D. Müller-Schulte, D. Bahadur, W. Richtering, Magnetic nanoparticles encapsulated within a thermoresponsive polymer. Journal of Nanoscience and Nanotechnology. ,vol. 9, pp. 5355- 5361 ,(2009) , 10.1166/JNN.2009.1265
Fei Chen, Peng Liu, Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings ACS Applied Materials & Interfaces. ,vol. 3, pp. 2694- 2702 ,(2011) , 10.1021/AM200488M
Edith I. Yslas, Luis E. Ibarra, Damián O. Peralta, César A. Barbero, Viviana A. Rivarola, Mabel L. Bertuzzi, Polyaniline nanofibers: Acute toxicity and teratogenic effect on Rhinella arenarum embryos Chemosphere. ,vol. 87, pp. 1374- 1380 ,(2012) , 10.1016/J.CHEMOSPHERE.2012.02.033