Flexible and modular virtual scanning probe microscope

作者: John Tracey , Filippo Federici Canova , Olli Keisanen , David Z. Gao , Peter Spijker

DOI: 10.1016/J.CPC.2015.05.013

关键词:

摘要: Abstract Non-contact Atomic Force Microscopy (NC-AFM) is an experimental technique capable of imaging almost any surface with atomic resolution, in a wide variety environments. Linking measured images to real understanding system properties often difficult, and many studies combine experiments detailed modelling, particular using virtual simulators directly mimic operation. In this work we present the PyVAFM, flexible modular based force microscope simulating operational mode or set-up. Furthermore, PyVAFM fully expandable allow novel unique set-ups be simulated, finally ships developed documentation tutorial increase usability. Program summary title: Python Virtual Microscope (PyVAFM) Catalogue identifier: AEWX_v1_0 URL: http://cpc.cs.qub.ac.uk/summaries/AEWX_v1_0.html obtainable from: CPC Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. lines distributed program, including test data, etc.: 852449 bytes 28531404 Distribution format: .ZIP Programming language: input scripts C core. Computer: Desktop. Operating system: UNIX. RAM: 500 Megabytes Classification: 16.4. External routines: GCC, 2.7, scipy numpy Nature problem: Simulation delays/artefacts. Solution method: A simulation was where user can connect several components together order simulate mode. Each these also mathematically similar their life counter parts hence incorporating delays artefacts. Restrictions: For tip-sample interactions beyond simple analytical forms, interaction field should provided by via separate simulations e.g first principles classical calculations. Unusual features: Modularity Additional comments: The tutorials include example approaches fields, authors provide others upon request. Running time: 2 h. given installation section manual only takes about 30 s.

参考文章(41)
L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy Science. ,vol. 325, pp. 1110- 1114 ,(2009) , 10.1126/SCIENCE.1176210
Thomas Trevethan, Lev Kantorovich, Jérôme Polesel-Maris, Sébastien Gauthier, Alexander Shluger, Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip Physical Review B. ,vol. 76, pp. 085414- ,(2007) , 10.1103/PHYSREVB.76.085414
John E. Sader, Suzanne P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy Applied Physics Letters. ,vol. 84, pp. 1801- 1803 ,(2004) , 10.1063/1.1667267
Prokop Hapala, Georgy Kichin, Christian Wagner, F. Stefan Tautz, Ruslan Temirov, Pavel Jelínek, Mechanism of high-resolution STM/AFM imaging with functionalized tips Physical Review B. ,vol. 90, pp. 085421- ,(2014) , 10.1103/PHYSREVB.90.085421
Wilhelm Melitz, Jian Shen, Andrew C. Kummel, Sangyeob Lee, Kelvin probe force microscopy and its application Surface Science Reports. ,vol. 66, pp. 1- 27 ,(2011) , 10.1016/J.SURFREP.2010.10.001
Sebastian Rode, Noriaki Oyabu, Kei Kobayashi, Hirofumi Yamada, Angelika Kühnle, True Atomic-Resolution Imaging of (101̅4) Calcite in Aqueous Solution by Frequency Modulation Atomic Force Microscopy Langmuir. ,vol. 25, pp. 2850- 2853 ,(2009) , 10.1021/LA803448V
Jérôme Polesel-Maris, Sébastien Gauthier, A virtual dynamic atomic force microscope for image calculations Journal of Applied Physics. ,vol. 97, pp. 044902- ,(2005) , 10.1063/1.1841462
Udo D Schwarz, Noncontact atomic force microscopy. Beilstein Journal of Nanotechnology. ,vol. 3, pp. 172- 173 ,(2012) , 10.3762/BJNANO.3.17
Morten K. Rasmussen, Adam S. Foster, Berit Hinnemann, Filippo F. Canova, Stig Helveg, Kristoffer Meinander, Natalia M. Martin, Jan Knudsen, Alina Vlad, Edvin Lundgren, Andreas Stierle, Flemming Besenbacher, Jeppe V. Lauritsen, Stable cation inversion at the MgAl2O4(100) surface. Physical Review Letters. ,vol. 107, pp. 036102- ,(2011) , 10.1103/PHYSREVLETT.107.036102