Machine-Learning Methods to Predict Protein Interaction Sites in Folded Proteins

作者: Castrense Savojardo , Piero Fariselli , Damiano Piovesan , Pier Luigi Martelli , Rita Casadio

DOI: 10.1007/978-3-642-35686-5_11

关键词:

摘要: A reliable predictor of protein-protein interaction sites is necessary to investigate and model protein functional networks. Hidden Markov Support Vector Machines (HM-SVM) have been shown be among the best performing methods on this task. Furthermore, it has noted that performance a improves when its input takes advantage difference between observed predicted residue solvent accessibility. In paper, for first time, we combine these elements present ISPRED2, new HM-SVM-based method overpasses state art (Q2=0.71 correlation=0.43). ISPRED2 consists sets Python scripts aimed at integrating different third-party software obtain final prediction.

参考文章(33)
Piero Fariselli, Florencio Pazos, Alfonso Valencia, Rita Casadio, Prediction of protein--protein interaction sites in heterocomplexes with neural networks. FEBS Journal. ,vol. 269, pp. 1356- 1361 ,(2002) , 10.1046/J.1432-1033.2002.02767.X
Mile Šikić, Sanja Tomić, Kristian Vlahoviček, Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. PLOS Computational Biology. ,vol. 5, ,(2009) , 10.1371/JOURNAL.PCBI.1000278
Michael Wagner, Rafaℓ Adamczak, Aleksey Porollo, Jarosℓaw Meller, Linear regression models for solvent accessibility prediction in proteins. Journal of Computational Biology. ,vol. 12, pp. 355- 369 ,(2005) , 10.1089/CMB.2005.12.355
Kim Henrick, Janet M Thornton, PQS: a protein quaternary structure file server. Trends in Biochemical Sciences. ,vol. 23, pp. 358- 361 ,(1998) , 10.1016/S0968-0004(98)01253-5
Yanay Ofran, Burkhard Rost, Predicted protein–protein interaction sites from local sequence information FEBS Letters. ,vol. 544, pp. 236- 239 ,(2003) , 10.1016/S0014-5793(03)00456-3
Wolfgang Kabsch, Christian Sander, None, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features Biopolymers. ,vol. 22, pp. 2577- 2637 ,(1983) , 10.1002/BIP.360221211
Bin Liu, Xiaolong Wang, Lei Lin, Buzhou Tang, Qiwen Dong, Xuan Wang, None, Prediction of protein binding sites in protein structures using hidden Markov support vector machine BMC Bioinformatics. ,vol. 10, pp. 381- 381 ,(2009) , 10.1186/1471-2105-10-381
Bing Wang, Peng Chen, De-Shuang Huang, Jing-jing Li, Tat-Ming Lok, Michael R Lyu, None, Predicting protein interaction sites from residue spatial sequence profile and evolution rate FEBS Letters. ,vol. 580, pp. 380- 384 ,(2006) , 10.1016/J.FEBSLET.2005.11.081
Qiwen Dong, Xiaolong Wang, Lei Lin, Yi Guan, None, Exploiting residue-level and profile-level interface propensities for usage in binding sites prediction of proteins BMC Bioinformatics. ,vol. 8, pp. 147- 147 ,(2007) , 10.1186/1471-2105-8-147
S Altschula, Warren Gisha, Webb Millerb, E Meyersc, D Lipmana, None, Basic Local Alignment Search Tool Journal of Molecular Biology. ,vol. 215, pp. 403- 410 ,(1990) , 10.1016/S0022-2836(05)80360-2