Shape Optimization of Actuators over Banach Spaces for Nonlinear Systems

作者: Dante Kalise , Kirsten A. Morris , Kevin Sturm , M. Sajjad Edalatzadeh

DOI:

关键词:

摘要: In this paper, optimal actuator shape for nonlinear parabolic systems is discussed. The system under study an abstract differential equation with a locally Lipschitz part. A quadratic cost on the state and input of considered. existence has been established in literature. This paper focuses driving optimality conditions shapes belonging to Banach space. application theory design railway track model

参考文章(17)
Yannick Privat, Emmanuel Trélat, Enrique Zuazua, Optimal location of controllers for the one-dimensional wave equation Annales de l'Institut Henri Poincare (C) Non Linear Analysis. ,vol. 30, pp. 1097- 1126 ,(2013) , 10.1016/J.ANIHPC.2012.11.005
C.S. Kubrusly, H. Malebranche, Sensors and controllers location in distributed systems-A survey Automatica. ,vol. 21, pp. 117- 128 ,(1985) , 10.1016/0005-1098(85)90107-4
Neda Darivandi, Kirsten Morris, Amir Khajepour, An algorithm for LQ optimal actuator location Smart Materials and Structures. ,vol. 22, pp. 035001- ,(2013) , 10.1088/0964-1726/22/3/035001
Arnaud Münch, Francisco Periago, None, Optimal distribution of the internal null control for the one-dimensional heat equation Journal of Differential Equations. ,vol. 250, pp. 95- 111 ,(2011) , 10.1016/J.JDE.2010.10.020
Grégoire Allaire, Arnaud Münch, Francisco Periago, None, Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation SIAM Journal on Control and Optimization. ,vol. 48, pp. 5333- 5356 ,(2010) , 10.1137/090780481
Arnaud Münch, None, Optimal location of the support of the control for the 1-D wave equation: numerical investigations Computational Optimization and Applications. ,vol. 42, pp. 443- 470 ,(2009) , 10.1007/S10589-007-9133-X
Dhanaraja Kasinathan, Kirsten Morris, H ∞ -Optimal Actuator Location IEEE Transactions on Automatic Control. ,vol. 58, pp. 2522- 2535 ,(2013) , 10.1109/TAC.2013.2266870
Arnaud Münch, Francisco Periago, None, Numerical approximation of bang–bang controls for the heat equation: An optimal design approach Systems & Control Letters. ,vol. 62, pp. 643- 655 ,(2013) , 10.1016/J.SYSCONLE.2013.04.009
S. Kumar, J. Seinfeld, Optimal location of measurements for distributed parameter estimation IEEE Transactions on Automatic Control. ,vol. 23, pp. 690- 698 ,(1978) , 10.1109/TAC.1978.1101803