Integral affine Schur-Weyl reciprocity

作者: Qiang Fu

DOI:

关键词:

摘要: Let ${\boldsymbol{\mathfrak D}_{\vartriangle}}(n)$ be the double Ringel--Hall algebra of cyclic quiver $\triangle(n)$ and let $\dot{\boldsymbol{\mathfrak modified quantum affine D}_{\vartriangle}}(n)$. We will construct an integral form $\dot{{\mathfrak for such that natural homomorphism from to Schur is surjective. Furthermore, we use Hall algebras ${\mathcal U}_{\mathbb Z}(\hat{\frak{gl}}_n)$ universal enveloping U}(\hat{\frak{gl}}_n)$ loop $\hat{\frak{gl}}_n=\frak{gl}_n({\mathbb Q})\otimes\mathbb Q[t,t^{-1}]$, prove U}_\mathbb Z(\hat{\frak{gl}}_n)$ over $\mathbb Z$

参考文章(14)
George Lusztig, Introduction to Quantum Groups ,(1993)
Claus Michael Ringel, The Composition Algebra of a Cyclic Quiver Proceedings of the London Mathematical Society. ,vol. s3-66, pp. 507- 537 ,(1993) , 10.1112/PLMS/S3-66.3.507
S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl Reciprocity for the Hecke Algebra of (Z/rZ) ≀ Sn Journal of Algebra. ,vol. 178, pp. 374- 390 ,(1995) , 10.1006/JABR.1995.1354
R. W. Carter, G. Lusztig, On the Modular Representations of the General Linear and Symmetric Groups Lecture Notes in Mathematics. ,vol. 136, pp. 218- 220 ,(1974) , 10.1007/978-3-662-21571-5_18
C. De Concini, C. Procesi, A characteristic free approach to invariant theory Advances in Mathematics. ,vol. 21, pp. 330- 354 ,(1976) , 10.1016/S0001-8708(76)80003-5
Masahiro Sakamoto, Toshiaki Shoji, Schur–Weyl Reciprocity for Ariki–Koike Algebras Journal of Algebra. ,vol. 221, pp. 293- 314 ,(1999) , 10.1006/JABR.1999.7973