Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator.

作者: Rainer Schreiber , Hermann Pavenstädt , Rainer Greger , Karl Kunzelmann

DOI: 10.1016/S0014-5793(00)01689-6

关键词:

摘要: The cystic fibrosis transmembrane conductance regulator (CFTR) is essential for epithelial electrolyte transport and has been shown to be a of Na+, K+, Cl− channels. CFTR also enhances osmotic water permeability when activated by cAMP. This was detected initially in Xenopus oocytes present human airway cells, however, the mechanisms remain obscure. Here, we show that activates aquaporin 3 expressed endogenously exogenously laevis. interaction requires stimulation wild type cAMP an intact first nucleotide binding domain as demonstrated other CFTR–protein interactions.

参考文章(40)
E. M. Schwiebert, T. Flotte, G. R. Cutting, W. B. Guggino, Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. American Journal of Physiology-cell Physiology. ,vol. 266, ,(1994) , 10.1152/AJPCELL.1994.266.5.C1464
ERIK M. SCHWIEBERT, DALE J. BENOS, MARIE E. EGAN, M. JACKSON STUTTS, WILLIAM B. GUGGINO, CFTR Is a Conductance Regulator as well as a Chloride Channel Physiological Reviews. ,vol. 79, pp. 145- 166 ,(1999) , 10.1152/PHYSREV.1999.79.1.S145
K. Kunzelmann, The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Reviews of Physiology Biochemistry and Pharmacology. ,vol. 137, pp. 1- 70 ,(1999) , 10.1007/3-540-65362-7_4
Erik M. Schwiebert, Marie E. Egan, Tae-Ho Hwang, Stephanie B. Fulmer, Sandra S. Allen, Garry R. Cutting, William B. Guggino, CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell. ,vol. 81, pp. 1063- 1073 ,(1995) , 10.1016/S0092-8674(05)80011-X
Shusheng Wang, Ronald W Raab, Peter J Schatz, William B Guggino, Min Li, Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR) FEBS Letters. ,vol. 427, pp. 103- 108 ,(1998) , 10.1016/S0014-5793(98)00402-5
R. Schreiber, A. Hopf, M. Mall, R. Greger, K. Kunzelmann, The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 5310- 5315 ,(1999) , 10.1073/PNAS.96.9.5310
J.H. Widdicombe, J.G. Widdicombe, Regulation of human airway surface liquid. Respiration Physiology. ,vol. 99, pp. 3- 12 ,(1995) , 10.1016/0034-5687(94)00095-H
Iskander I. Ismailov, Mouhamed S. Awayda, Bakhram K. Berdiev, James K. Bubien, Joseph E. Lucas, Catherine M. Fuller, Dale J. Benos, Triple-barrel Organization of ENaC, a Cloned Epithelial Na+ Channel Journal of Biological Chemistry. ,vol. 271, pp. 807- 816 ,(1996) , 10.1074/JBC.271.2.807
R. Ramírez-Lorca, M. L. Vizuete, J. L. Venero, M. Revuelta, J. Cano, A. A. Ilundáin, M. Echevarría, Localization of Aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats Pflügers Archiv: European Journal of Physiology. ,vol. 438, pp. 94- 100 ,(1999) , 10.1007/S004240050884
Tonghui Ma, A. S. Verkman, Aquaporin water channels in gastrointestinal physiology The Journal of Physiology. ,vol. 517, pp. 317- 326 ,(1999) , 10.1111/J.1469-7793.1999.0317T.X