Avoidance of vertical displacement events in DIII-D using a neural network growth rate estimator

作者: B.S. Sammuli , D.A. Humphreys , J.L. Barr

DOI: 10.1016/J.FUSENGDES.2021.112492

关键词:

摘要: Abstract Robust disruption avoidance techniques are critical for the development of reliable fusion reactor devices. A viable will require non-disruptive, long pulse operation where simply shutting down a discharge is undesirable. To achieve such performance, plasma must be controlled to continuously avoid hazardous regimes instead asynchronously aborting. recent experiment on DIII-D demonstrated first time real-time control proximity disruptive instability boundary. In particular, vertical growth rate, an eigenvalue that characterizes degree plasma's position, was regulated so as not exceed DIII-D's controllability limit. The open-loop rate estimated in real system using neural network model trained with tens thousands shots. replicate results RZRIG [1] , rigid displacement code calculating rate. Once trained, producing estimate multiple orders magnitude faster than RZRIG, thereby making calculation suitable execution. by adjusting elongation and distance inner wall vessel, this regulation shown reliably event disruptions (i.e. uncontrolled oscillations) plasma. This work presents these experimental results, including dynamic performance effectiveness technique. Details presented training model, concerns hyperparameter tuning uncertainty quantification. Additionally, methodology embedding into discussed.

参考文章(17)
Luís Torgo, Rita P. Ribeiro, Bernhard Pfahringer, Paula Branco, SMOTE for Regression portuguese conference on artificial intelligence. pp. 378- 389 ,(2013) , 10.1007/978-3-642-40669-0_33
Geoffrey E. Hinton, Vinod Nair, Rectified Linear Units Improve Restricted Boltzmann Machines international conference on machine learning. pp. 807- 814 ,(2010)
E.A. Lazarus, J.B. Lister, G.H. Neilson, Control of the Vertical Instability in Tokamaks Nuclear Fusion. ,vol. 30, pp. 111- 141 ,(1990) , 10.1088/0029-5515/30/1/010
D.A Humphreys, J.R Ferron, M Bakhtiari, J.A Blair, Y In, G.L Jackson, H Jhang, R.D Johnson, J.S Kim, R.J LaHaye, J.A Leuer, B.G Penaflor, E Schuster, M.L Walker, H Wang, A.S Welander, D.G Whyte, Development of ITER-relevant plasma control solutions at DIII-D Nuclear Fusion. ,vol. 47, pp. 943- 951 ,(2007) , 10.1088/0029-5515/47/8/028
J.R Ferron, M.L Walker, L.L Lao, H.E. St John, D.A Humphreys, J.A Leuer, Real time equilibrium reconstruction for tokamak discharge control Nuclear Fusion. ,vol. 38, pp. 1055- 1066 ,(1998) , 10.1088/0029-5515/38/7/308
D.A. Humphreys, T.A. Casper, N. Eidietis, M. Ferrara, D.A. Gates, I.H. Hutchinson, G.L. Jackson, E. Kolemen, J.A. Leuer, J. Lister, L.L. LoDestro, W.H. Meyer, L.D. Pearlstein, A. Portone, F. Sartori, M.L. Walker, A.S. Welander, S.M. Wolfe, Experimental vertical stability studies for ITER performance and design guidance Nuclear Fusion. ,vol. 49, pp. 115003- ,(2009) , 10.1088/0029-5515/49/11/115003
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)
M.L. Walker, D.A. Humphreys, J.R. Ferron, Control of plasma poloidal shape and position in the DIII-D tokamak conference on decision and control. ,vol. 4, pp. 3703- 3708 ,(1997) , 10.1109/CDC.1997.652432
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley, Google Vizier: A Service for Black-Box Optimization knowledge discovery and data mining. pp. 1487- 1495 ,(2017) , 10.1145/3097983.3098043