Reactor optimization for α‐1,2 glucooligosaccharide synthesis by immobilized dextransucrase

作者: Marguerite Dols-Lafargue , Ren�-Marc Willemot , Pierre F. Monsan , Magali Remaud-Simeon

DOI: 10.1002/BIT.1183

关键词:

摘要: The immobilization of dextransucrase in Ca-alginate beads relies on the close association between dextran polymer and dextransucrase. However, high amounts enzyme preparation drastically limit specific activity immobilized (4 U/mL alginate beads). Moreover, even absence diffusion limitation at batch conditions used, behavior is modified by entrapment so that yield increases α-1,2 glucooligosaccharides (GOS) are produced with a lower (46.6% instead 56.7%) have mean degree polymerization than free When catalyst used continuous reaction, reactor flow rate necessary to obtain conversion substrates very low, leading external resistance. As result, synthesis higher its accumulation within limits operational stability decreases glucooligosaccharide productivity. This effect can be limited using columns length diameter ratio ≥20, optimizing substrate concentrations feed solution: best productivity obtained was 3.74 g · U−1 h−1, an GOS 36%. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 276–284, 2001.

参考文章(24)
H.J. Koepsell, H.M. Tsuchiya, N.N. Hellman, A. Kazenko, C.A. Hoffman, E.S. Sharpe, R.W. Jackson, Enzymatic synthesis of dextran; acceptor specificity and chain initiation. Journal of Biological Chemistry. ,vol. 200, pp. 793- 801 ,(1953) , 10.1016/S0021-9258(18)71427-0
P. Monsan, F. Paul, D. Auriol, A. Lopez, [23] Dextran synthesis using immobilized Leuconostoc mesenteroides dextransucrase Methods in Enzymology. ,vol. 136, pp. 239- 254 ,(1987) , 10.1016/S0076-6879(87)36025-2
John F. Robyt, Barbara K. Kimble, Timothy F. Walseth, The mechanism of dextransucrase action Archives of Biochemistry and Biophysics. ,vol. 165, pp. 634- 640 ,(1974) , 10.1016/0003-9861(74)90291-4
Pierre F. Monsan, Franois Paul, Oligosaccharide feed additives Biotechnology in Animal Feeds and Animal Feeding. pp. 233- 245 ,(2007) , 10.1002/9783527615353.CH11
K. Buchholz, J. Klein, [1] Characterization of immobilized biocatalysts Methods in Enzymology. ,vol. 135, pp. 3- 30 ,(1987) , 10.1016/0076-6879(87)35062-1
J. Klein, J. Stock, K. -D. Vorlop, Pore size and properties of spherical Ca-alginate biocatalysts European Journal of Applied Microbiology and Biotechnology. ,vol. 18, pp. 86- 91 ,(1983) , 10.1007/BF00500829
Elisabetta de Alteriis, Vincenzo Scardi, Paolo Masi, Palma Parascandola, Mechanical stability and diffusional resistance of a polymeric gel used for biocatalyst immobilization Enzyme and Microbial Technology. ,vol. 12, pp. 539- 545 ,(1990) , 10.1016/0141-0229(90)90072-X
M. QUIRASCO, A. LOPEZ-MUNGUIA, V. PELENC, M. REMAUD, F. PAUL, P. MONSAN, Enzymatic Production of Glucooligosaccharides Containing α-(1 → 2) Osidic Bonds Potential Application in Nutrition Annals of the New York Academy of Sciences. ,vol. 750, pp. 317- 320 ,(1995) , 10.1111/J.1749-6632.1995.TB19972.X
Marguerite Dols, Magali Remaud Simeon, René-Marc Willemot, Michel R. Vignon, Pierre F. Monsan, Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase Carbohydrate Research. ,vol. 305, pp. 549- 559 ,(1997) , 10.1016/S0008-6215(97)10063-5
Robert M. Mayer, Marilyn M. Matthews, Cheryl L. Futerman, Veena K. Parnaik, Stephanie M. Jung, Dextransucrase: Acceptor substrate reactions Archives of Biochemistry and Biophysics. ,vol. 208, pp. 278- 287 ,(1981) , 10.1016/0003-9861(81)90150-8