Every team deserves a second chance: identifying when things go wrong (student abstract version)

作者: Leandro Soriano Marcolino , Milind Tambe , Vaishnavh Nagarajan

DOI:

关键词:

摘要: We show that without using any domain knowledge, we can predict the final performance of a team voting agents, at step towards solving complex problem.

参考文章(6)
Albert Xin Jiang, Leandro Soriano Marcolino, Milind Tambe, Multi-agent team formation: diversity beats strength? international joint conference on artificial intelligence. pp. 279- 285 ,(2013)
Fernando Ramos, Huberto Ayanegui, Discovering tactical behavior patterns supported by topological structures in soccer agent domains adaptive agents and multi-agents systems. pp. 1421- 1424 ,(2008) , 10.5555/1402821.1402888
Ariel D Procaccia, Tuomas Sandholm, Albert Jiang, Nisarg Shah, Leandro Soriano Marcolino, Milind Tambe, Diverse Randomized Agents Vote to Win neural information processing systems. ,vol. 27, pp. 2573- 2581 ,(2014)
Taylor Raines, Milind Tambe, Stacy Marsella, Automated assistants to aid humans in understanding team behaviors adaptive agents and multi-agents systems. pp. 419- 426 ,(2000) , 10.1145/336595.337558
Emma Bowring, Albert Xin Jiang, Leandro Soriano Marcolino, Haifeng Xu, Milind Tambe, Give a hard problem to a diverse team: exploring large action spaces national conference on artificial intelligence. pp. 1485- 1491 ,(2014)
Mitja Luštrek, Violeta Mirchevska, Matjaž Gams, Andraž Bežek, Discovering Strategic Behaviour of Multi-Agent Systems in Adversary Settings Computing and Informatics \/ Computers and Artificial Intelligence. ,vol. 33, pp. 79- 108 ,(2014)