Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

作者: Benjamín J. Sánchez , José R. Pérez-Correa , Eduardo Agosin

DOI: 10.1016/J.YMBEN.2014.07.004

关键词:

摘要: Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions cell׳s metabolism during dynamic cultures. However, importance model parameters used these methodologies not properly addressed. Here, we present a novel simple procedure identify dFBA that are relevant for calibration. The uses metaheuristic optimization pre/post-regression diagnostics, fixing iteratively do have significant role. We evaluated this protocol Saccharomyces cerevisiae framework calibrated aerobic fed-batch anaerobic batch cultivations. structures achieved only significant, sensitive uncorrelated able calibrate different experimental data. show consumption, suboptimal growth production rates more useful calibrating S. models than Boolean gene expression rules, biomass requirements ATP maintenance.

参考文章(84)
Ryan P. Nolan, Kyongbum Lee, Dynamic model of CHO cell metabolism Metabolic Engineering. ,vol. 13, pp. 108- 124 ,(2011) , 10.1016/J.YMBEN.2010.09.003
Amit Mehra, Kelvin H. Lee, Vassily Hatzimanikatis, Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnology and Bioengineering. ,vol. 84, pp. 822- 833 ,(2003) , 10.1002/BIT.10860
Jeffrey D Orth, Ines Thiele, Bernhard Ø Palsson, What is flux balance analysis Nature Biotechnology. ,vol. 28, pp. 245- 248 ,(2010) , 10.1038/NBT.1614
Jonathan R. Karr, Jayodita C. Sanghvi, Derek N. Macklin, Miriam V. Gutschow, Jared M. Jacobs, Benjamin Bolival, Nacyra Assad-Garcia, John I. Glass, Markus W. Covert, A Whole-Cell Computational Model Predicts Phenotype from Genotype Cell. ,vol. 150, pp. 389- 401 ,(2012) , 10.1016/J.CELL.2012.05.044
Javier Sainz, Francisco Pizarro, J. Ricardo Pérez-Correa, Eduardo Agosin, Modeling of yeast metabolism and process dynamics in batch fermentation. Biotechnology and Bioengineering. ,vol. 81, pp. 818- 828 ,(2003) , 10.1002/BIT.10535
Jasper A. Diderich, Mike Schepper, Pim van Hoek, Marijke A. H. Luttik, Johannes P. van Dijken, Jack T. Pronk, Paul Klaassen, Hans F. M. Boelens, M. Joost Teixeira de Mattos, Karel van Dam, Arthur L. Kruckeberg, Glucose Uptake Kinetics and Transcription of HXTGenes in Chemostat Cultures of Saccharomyces cerevisiae Journal of Biological Chemistry. ,vol. 274, pp. 15350- 15359 ,(1999) , 10.1074/JBC.274.22.15350
Ines Thiele, Bernhard Ø Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols. ,vol. 5, pp. 93- 121 ,(2010) , 10.1038/NPROT.2009.203
Khuloud Jaqaman, Gaudenz Danuser, Linking data to models: data regression Nature Reviews Molecular Cell Biology. ,vol. 7, pp. 813- 819 ,(2006) , 10.1038/NRM2030
Eva Balsa-Canto, Maria Rodriguez-Fernandez, Julio R. Banga, Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation Journal of Food Engineering. ,vol. 82, pp. 178- 188 ,(2007) , 10.1016/J.JFOODENG.2007.02.006
Eva Balsa-Canto, Antonio A Alonso, Julio R Banga, An iterative identification procedure for dynamic modeling of biochemical networks BMC Systems Biology. ,vol. 4, pp. 11- 11 ,(2010) , 10.1186/1752-0509-4-11