Nanoscale interactions of polyethylene glycol with thermo-mechanically pre-treated Pinus radiata biofuel substrate.

作者: Lloyd A. Donaldson , Roger H. Newman , Alankar Vaidya

DOI: 10.1002/BIT.25138

关键词:

摘要: Non-productive adsorption of cellulose degrading enzymes on lignin is a likely reason for reduced rate and extent enzymatic conversion lignocellulosic substrate to sugars. Additives such as polyethyleneglycol (PEG) may act blocking agents in this non-productive interaction. However, the exact molecular level interactions PEG with pre-treated substrates are not known. We have used confocal fluorescence microscopy combined Forster resonance energy transfer (FRET) reveal between present thermo-mechanically Pinus radiata substrate, fluorescently labeled PEG. It demonstrated that interaction mainly associated particles derived from secondary walls, little or no penetration into fragments middle lamella. This nanoscale information PEG–substrate will assist rationalizing pre-treatment methods reduce recalcitrance softwood biofuel substrates. Biotechnol. Bioeng. 2014;111: 719–725. © 2013 Wiley Periodicals, Inc.

参考文章(34)
Arthur J. Ragauskas, Fang Huang, Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood Springer Berlin Heidelberg. pp. 151- 179 ,(2013) , 10.1007/978-3-642-32735-3_8
Lloyd Donaldson, Ksenija Radotić, Aleksandar Kalauzi, Daniela Djikanović, Milorad Jeremić, Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. Journal of Structural Biology. ,vol. 169, pp. 106- 115 ,(2010) , 10.1016/J.JSB.2009.09.006
Paul Zhu, Jose M. Moran-Mirabal, Jeremy S. Luterbacher, Larry P. Walker, Harold G. Craighead, Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy Cellulose. ,vol. 18, pp. 749- 758 ,(2011) , 10.1007/S10570-011-9506-2
L. Stryer, R. P. Haugland, Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 58, pp. 719- 726 ,(1967) , 10.1073/PNAS.58.2.719
L. A. Donaldson, Ultrastructure of wood cellulose substrates during enzymatic hydrolysis Wood Science and Technology. ,vol. 22, pp. 33- 41 ,(1988) , 10.1007/BF00353226
Lisa Ryan, Frank Convery, Susana Ferreira, Stimulating the use of biofuels in the European Union: Implications for climate change policy Energy Policy. ,vol. 34, pp. 3184- 3194 ,(2006) , 10.1016/J.ENPOL.2005.06.010
Patricia Bubner, Judith Dohr, Harald Plank, Claudia Mayrhofer, Bernd Nidetzky, Cellulases Dig Deep IN SITU OBSERVATION OF THE MESOSCOPIC STRUCTURAL DYNAMICS OF ENZYMATIC CELLULOSE DEGRADATION Journal of Biological Chemistry. ,vol. 287, pp. 2759- 2765 ,(2012) , 10.1074/JBC.M111.257717
Tracy L. Putoczki, Juliet A. Gerrard, Brian G. Butterfield, Sandra L. Jackson, The Distribution of un-esterified and Methyl-Esterified Pectic Polysaccharides in Pinus Radiata Iawa Journal. ,vol. 29, pp. 115- 127 ,(2008) , 10.1163/22941932-90000173
Jia Ouyang, Zhenwei Dong, Xiangyang Song, Xin Lee, Mu Chen, Qiang Yong, Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition Bioresource Technology. ,vol. 101, pp. 6685- 6691 ,(2010) , 10.1016/J.BIORTECH.2010.03.085
Johan Börjesson, Ragna Peterson, Folke Tjerneld, Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition Enzyme and Microbial Technology. ,vol. 40, pp. 754- 762 ,(2007) , 10.1016/J.ENZMICTEC.2006.06.006