Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives

作者: K. Kolodziej , K. Theissinger , J. Brün , H. K. Schulz , R. Schulz

DOI: 10.1007/S10344-011-0588-9

关键词:

摘要: In the context of developing a noninvasive, practicable method for population size estimation in wild boar, we present stepwise procedure to reduce number required microsatellite markers individual genotyping. Step1: an initial marker set 12 loci was tested species specificity with nontarget DNA and resulted exclusion two markers. Step 2: variability test regarding heterozygosity deviations from Hardy–Weinberg equilibrium led rejection further 3: remaining eight were transferability across populations three separate boar sample sets. 4: on basis probability identity values, reduction five possible. 5: novel using tissue samples female boars their embryos provided evidence that four variable one sex are sufficient identification close relatives. 6: feces finally used estimate PCR (PS) genotyping success (GS). conclusion, recommend specific four-marker combination both PS GS >50% reliable noninvasive boar.

参考文章(42)
Stewart Lowden, H.A. Finlayson, A.A. Macdonald, A.C. Downing, S.J. Goodman, K. Leus, L. Kaspe, E. Wahyuni, A.L. Archibald, Application of Sus scrofa microsatellite markers to wild suiformes Conservation Genetics. ,vol. 3, pp. 347- 350 ,(2002) , 10.1023/A:1019989432176
John W. Keele, Gary A. Rohrer, Craig W. Beattie, Leeson J. Alexander, Tim P. Smith, A microsatellite linkage map of the porcine genome. Genetics. ,vol. 136, pp. 231- 245 ,(1994) , 10.1093/GENETICS/136.1.231
Eric Baubet, Sabrina Servanty, Carole Toïgo, Serge Brandt, Jean‐Michel Gaillard, Disentangling Natural From Hunting Mortality in an Intensively Hunted Wild Boar Population Journal of Wildlife Management. ,vol. 72, pp. 1532- 1539 ,(2008) , 10.2193/2007-378
Gunter Sodeikat, Klaus Pohlmeyer, Impact of drive hunts on daytime resting site areas of wild boar family groups ( Sus scrofa L. ) Wildlife Biology in Practice. ,vol. 3, pp. 28- 38 ,(2007) , 10.2461/WBP.2007.3.4
Laura Iacolina, Massimo Scandura, Paolo Bongi, Marco Apollonio, Nonkin Associations in Wild Boar Social Units Journal of Mammalogy. ,vol. 90, pp. 666- 674 ,(2009) , 10.1644/08-MAMM-A-074R1.1
David C. Queller, Keith F. Goodnight, ESTIMATING RELATEDNESS USING GENETIC MARKERS Evolution. ,vol. 43, pp. 258- 275 ,(1989) , 10.1111/J.1558-5646.1989.TB04226.X
C. Poteaux, E. Baubet, G. Kaminski, S. Brandt, F. S. Dobson, C. Baudoin, Socio‐genetic structure and mating system of a wild boar population Journal of Zoology. ,vol. 278, pp. 116- 125 ,(2009) , 10.1111/J.1469-7998.2009.00553.X
Petra Hájková, Barbora Zemanová, Kevin Roche, Bedřich Hájek, An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size Conservation Genetics. ,vol. 10, pp. 1667- 1681 ,(2009) , 10.1007/S10592-008-9745-4
L J Alexander, G A Rohrer, C W Beattie, Cloning and characterization of 414 polymorphic porcine microsatellites Animal Genetics. ,vol. 27, pp. 137- 148 ,(2009) , 10.1111/J.1365-2052.1996.TB00941.X
Tatsuo Kawarasaki, Tetsuya Kohsaka, Masaru Sone, Mitsutoshi Yoshida, Kimio Bamba, None, Detection of Y‐bearing porcine spermatozoa by in situ hybridization using digoxigenin‐labeled, porcine male‐specific DNA probe produced by polymerase chain reaction Molecular Reproduction and Development. ,vol. 40, pp. 455- 459 ,(1995) , 10.1002/MRD.1080400409