Pairwise network information and nonlinear correlations.

作者: Elliot A. Martin , Jaroslav Hlinka , Jörn Davidsen

DOI: 10.1103/PHYSREVE.94.040301

关键词:

摘要: Reconstructing the structural connectivity between interacting units from observed activity is a challenge across many different disciplines. The fundamental first step to establish whether or what extent interactions can be considered pairwise and, thus, modeled as an interaction network with simple links corresponding interactions. In principle, this determined by comparing maximum entropy given bivariate probability distributions true joint entropy. practical cases, not option since needed may reliably estimated optimization too computationally expensive. Here we present approach that allows one use mutual informations proxy for distributions. This has advantage of being less expensive and easier estimate. We achieve introducing novel maximization scheme based on conditioning entropies informations. renders our typically superior other methods linear approximations. advantages proposed method are documented using oscillator networks resting-state human brain generic relevant examples.

参考文章(54)
T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 19033- 19038 ,(2006) , 10.1073/PNAS.0609152103
Andraž Stožer, Marko Gosak, Jurij Dolenšek, Matjaž Perc, Marko Marhl, Marjan Slak Rupnik, Dean Korošak, Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices PLoS Computational Biology. ,vol. 9, pp. e1002923- 12 ,(2013) , 10.1371/JOURNAL.PCBI.1002923
K HLAVACKOVASCHINDLER, M PALUS, M VEJMELKA, J BHATTACHARYA, Causality detection based on information-theoretic approaches in time series analysis Physics Reports. ,vol. 441, pp. 1- 46 ,(2007) , 10.1016/J.PHYSREP.2006.12.004
Nicholas Timme, Wesley Alford, Benjamin Flecker, John M. Beggs, Synergy, redundancy, and multivariate information measures: an experimentalist's perspective Journal of Computational Neuroscience. ,vol. 36, pp. 119- 140 ,(2014) , 10.1007/S10827-013-0458-4
Milan Paluš, David Hartman, Jaroslav Hlinka, Martin Vejmelka, Discerning connectivity from dynamics in climate networks Nonlinear Processes in Geophysics. ,vol. 18, pp. 751- 763 ,(2011) , 10.5194/NPG-18-751-2011
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620
Victor M. Eguíluz, Dante R. Chialvo, Guillermo A. Cecchi, Marwan Baliki, A. Vania Apkarian, Scale-Free Brain Functional Networks Physical Review Letters. ,vol. 94, pp. 018102- ,(2005) , 10.1103/PHYSREVLETT.94.018102
D. Kugiumtzis, Direct-coupling information measure from nonuniform embedding Physical Review E. ,vol. 87, pp. 062918- ,(2013) , 10.1103/PHYSREVE.87.062918
E. A. Martin, M. Paczuski, J. Davidsen, Interpretation of link fluctuations in climate networks during El Niño periods EPL. ,vol. 102, pp. 48003- ,(2013) , 10.1209/0295-5075/102/48003