Learning to compose fuzzy behaviors for autonomous agents

作者: Andrea Bonarini , Filippo Basso

DOI: 10.1016/S0888-613X(97)00002-9

关键词:

摘要: Abstract We present S-ELF, an evolutionary algorithm that we have developed to learn the context of activation fuzzy logic controllers implementing behaviors for autonomous agent. S-ELF learns metarules are used coordinate basic in order perform complex tasks a partially and imprecisely known environment. Context expressed terms positive negated predicates. also show how can robust portable behaviors, thus reducing time effort design behavior-based agents.

参考文章(19)
Maja J. Mataric, A Distributed Model for Mobile Robot Environment-Learning and Navigation Massachusetts Institute of Technology. ,(1990)
Christopher J.C.H. Watkins, Peter Dayan, Technical Note Q-Learning Machine Learning. ,vol. 8, pp. 279- 292 ,(1992) , 10.1023/A:1022676722315
J. L. Verdegay, Francisco Herrera, Genetic Algorithms and Soft Computing Physica-Verlag. ,(1996)
Sridhar Mahadevan, Jonathan Connell, Automatic programming of behavior-based robots using reinforcement learning Artificial Intelligence. ,vol. 55, pp. 311- 365 ,(1992) , 10.1016/0004-3702(92)90058-6
Stewart W. Wilson, Classifier fitness based on accuracy Evolutionary Computation. ,vol. 3, pp. 149- 175 ,(1995) , 10.1162/EVCO.1995.3.2.149
Lashon B. Booker, Classifier systems that learn internal world models Machine Learning. ,vol. 3, pp. 161- 192 ,(1988) , 10.1007/BF00113896
M.J. Mataric, Integration of representation into goal-driven behavior-based robots international conference on robotics and automation. ,vol. 8, pp. 304- 312 ,(1992) , 10.1109/70.143349
Marco Dorigo, Marco Colombetti, Robot shaping: developing autonomous agents through learning Artificial Intelligence. ,vol. 71, pp. 321- 370 ,(1994) , 10.1016/0004-3702(94)90047-7
Andrea Bonarini, Anytime learning and adaptation of structured fuzzy behaviors Adaptive Behavior. ,vol. 5, pp. 281- 315 ,(1997) , 10.1177/105971239700500304
Alessandro Saffiotti, Kurt Konolige, Enrique H. Ruspini, A multivalued logic approach to integrating planning and control Artificial Intelligence. ,vol. 76, pp. 481- 526 ,(1995) , 10.1016/0004-3702(94)00088-I