F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

作者: M. P. Murrell , M. L. Gardel

DOI: 10.1073/PNAS.1214753109

关键词:

摘要: Here we develop a minimal model of the cell actomyosin cortex by forming quasi-2D cross-linked filamentous actin (F-actin) network adhered to membrane and contracted myosin thick filaments. Myosin motors generate both compressive tensile stresses on F-actin consequently induce large bending fluctuations, which reduces their effective persistence length <1 μm. Over range conditions, show extent contraction corresponds exactly individual shortening via buckling. This demonstrates an essential role buckling in breaking symmetry between facilitate mesoscale up 80% strain. Portions buckled with radius curvature ~300 nm are prone severing thus mechanically coordinate contractility severing, initial step turnover. Finally, acquired myosin-induced can be further constrained adhesion membrane, accelerating filament but inhibiting long-range transmission necessary for contractility. Thus, regulate coupling severing. These data demonstrate nonlinear response potentiating myosin-mediated may serve as general mechanism cortical dynamics across diverse assemblies smooth muscle nonmuscle cells.

参考文章(41)
Yasuharu Arai, Ryohei Yasuda, Ken-ichirou Akashi, Yoshie Harada, Hidetake Miyata, Kazuhiko Kinosita, Hiroyasu Itoh, Tying a molecular knot with optical tweezers Nature. ,vol. 399, pp. 446- 448 ,(1999) , 10.1038/20894
A. M. Gordon, E. Homsher, M. Regnier, Regulation of Contraction in Striated Muscle Physiological Reviews. ,vol. 80, pp. 853- 924 ,(2000) , 10.1152/PHYSREV.2000.80.2.853
Brannon R. McCullough, Elena E. Grintsevich, Christine K. Chen, Hyeran Kang, Alan L. Hutchison, Arnon Henn, Wenxiang Cao, Cristian Suarez, Jean-Louis Martiel, Laurent Blanchoin, Emil Reisler, Enrique M. De La Cruz, Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing Biophysical Journal. ,vol. 101, pp. 151- 159 ,(2011) , 10.1016/J.BPJ.2011.05.049
Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 12937- 12942 ,(1996) , 10.1073/PNAS.93.23.12937
Michele A. Wozniak, Christopher S. Chen, Mechanotransduction in development: a growing role for contractility Nature Reviews Molecular Cell Biology. ,vol. 10, pp. 34- 43 ,(2009) , 10.1038/NRM2592
M. Soares e Silva, M. Depken, B. Stuhrmann, M. Korsten, F. C. MacKintosh, G. H. Koenderink, Active multistage coarsening of actin networks driven by myosin motors Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 9408- 9413 ,(2011) , 10.1073/PNAS.1016616108
L W Janson, J Kolega, D L Taylor, Modulation of contraction by gelation/solation in a reconstituted motile model. Journal of Cell Biology. ,vol. 114, pp. 1005- 1015 ,(1991) , 10.1083/JCB.114.5.1005
Kenneth G. Campellone, Matthew D. Welch, A nucleator arms race: cellular control of actin assembly Nature Reviews Molecular Cell Biology. ,vol. 11, pp. 237- 251 ,(2010) , 10.1038/NRM2867
S. Wang, P. G. Wolynes, Active contractility in actomyosin networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 6446- 6451 ,(2012) , 10.1073/PNAS.1204205109
Tatyana M. Svitkina, Alexander B. Verkhovsky, Kyle M. McQuade, Gary G. Borisy, Analysis of the Actin–Myosin II System in Fish Epidermal Keratocytes: Mechanism of Cell Body Translocation Journal of Cell Biology. ,vol. 139, pp. 397- 415 ,(1997) , 10.1083/JCB.139.2.397