Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution.

作者: Bin Gao , Shunyi Zhu

DOI: 10.1016/J.BBRC.2012.08.143

关键词:

摘要: Ancient invertebrate-type and classical insect-type defensins (AITDs CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical β-sheet (CSαβ) fold with different amino-terminal loop (n-loop) size diverse modes antibacterial action. Although they both identified as inhibitors cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, fungus-derived AITDs non-membrane mechanism, substituting its n-loop an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally circular dichroism (CD) functionally evaluated permeability assays electronic microscopic observation. Results showed Al-M folded into native-like structure, determined CD spectrum is similar micasin. highly efficacious against Gram-positive bacterium Bacillus megaterium lethal concentration 1.76μM. As expected, in contrast killed bacteria through mechanism The alteration action supports key role extension assembling functional surface for disruption. Our work provides mechanical evidence evolutionary relationship between

参考文章(24)
S Cociancich, A Ghazi, C Hetru, J.A. Hoffmann, L Letellier, Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. Journal of Biological Chemistry. ,vol. 268, pp. 19239- 19245 ,(1993) , 10.1016/S0021-9258(19)36505-6
Robert I. Lehrer, Wuyuan Lu, α-Defensins in human innate immunity Immunological Reviews. ,vol. 245, pp. 84- 112 ,(2012) , 10.1111/J.1600-065X.2011.01082.X
Andre de Oliveira Carvalho, Valdirene Moreira Gomes, Plant defensins and defensin-like peptides - biological activities and biotechnological applications. Current Pharmaceutical Design. ,vol. 17, pp. 4270- 4293 ,(2011) , 10.2174/138161211798999447
S. Zhu, B. Gao, P. J. Harvey, D. J. Craik, Dermatophytic defensin with antiinfective potential Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 8495- 8500 ,(2012) , 10.1073/PNAS.1201263109
Yanbing Wang, Shunyi Zhu, The defensin gene family expansion in the tick Ixodes scapularis. Developmental and Comparative Immunology. ,vol. 35, pp. 1128- 1134 ,(2011) , 10.1016/J.DCI.2011.03.030
T. Schneider, T. Kruse, R. Wimmer, I. Wiedemann, V. Sass, U. Pag, A. Jansen, A. K. Nielsen, P. H. Mygind, D. S. Raventos, S. Neve, B. Ravn, A. M. J. J. Bonvin, L. De Maria, A. S. Andersen, L. K. Gammelgaard, H.-G. Sahl, H.-H. Kristensen, Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II Science. ,vol. 328, pp. 1168- 1172 ,(2010) , 10.1126/SCIENCE.1185723
Koh Takeuchi, Hideo Takahashi, Mariko Sugai, Hideo Iwai, Toshiyuki Kohno, Kazuhisa Sekimizu, Shunji Natori, Ichio Shimada, Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. Journal of Biological Chemistry. ,vol. 279, pp. 4981- 4987 ,(2004) , 10.1074/JBC.M307815200
Shunyi Zhu, Evidence for myxobacterial origin of eukaryotic defensins Immunogenetics. ,vol. 59, pp. 949- 954 ,(2007) , 10.1007/S00251-007-0259-X