A Bayesian approach to geometric subspace estimation

作者: A. Srivastava

DOI: 10.1109/78.839985

关键词:

摘要: This paper presents a geometric approach to estimating subspaces as elements of the complex Grassmann-manifold, with each subspace represented by its unique, projection matrix. Variation between is modeled rotating their matrices via action unitary [elements group U(n)]. Subspace estimation or tracking then corresponds inferences on U(n). Taking Bayesian approach, posterior density derived U(n), and certain expectations under this are empirically generated. For choice Hilbert-Schmidt norm define errors, an optimal MMSE estimator derived. It shown that achieves lower bound expected squared errors associated all possible estimators. The computed using (Metropolis-adjusted) Langevin's-diffusion algorithm for sampling from posterior. use in tracking, prior model rotation, utilizes Newtonian dynamics, suggested.

参考文章(31)
Julian Besag, Peter J. Green, Spatial Statistics and Bayesian Computation Journal of the royal statistical society series b-methodological. ,vol. 55, pp. 25- 37 ,(1993) , 10.1111/J.2517-6161.1993.TB01467.X
Ulf Grenander, Michael I. Miller, Representations of Knowledge in Complex Systems Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 549- 581 ,(1994) , 10.1111/J.2517-6161.1994.TB02000.X
Steven Thomas Smith, Geometric optimization methods for adaptive filtering arXiv: Optimization and Control. ,(1993)
Richard L. Tweedie, Sean Meyn, Markov Chains and Stochastic Stability ,(1993)
Yali Amit, A multiflow approximation to diffusions Stochastic Processes and their Applications. ,vol. 37, pp. 213- 237 ,(1991) , 10.1016/0304-4149(91)90044-D
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Gareth O. Roberts, Jeffrey S. Rosenthal, Optimal scaling of discrete approximations to Langevin diffusions Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 60, pp. 255- 268 ,(1998) , 10.1111/1467-9868.00123
Alan Edelman, Tomás A. Arias, Steven T. Smith, The Geometry of Algorithms with Orthogonality Constraints SIAM Journal on Matrix Analysis and Applications. ,vol. 20, pp. 303- 353 ,(1999) , 10.1137/S0895479895290954
M.I. Miller, A. Srivastava, U. Grenander, Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition IEEE Transactions on Signal Processing. ,vol. 43, pp. 2678- 2690 ,(1995) , 10.1109/78.482117