Simulation model for contrast agent dynamics in brain perfusion scans.

作者: Jörg Bredno , Mark E. Olszewski , Max Wintermark

DOI: 10.1002/MRM.22431

关键词:

摘要: Standardization efforts are currently under way to reduce the heterogeneity of quantitative brain perfusion methods. A simulation model is proposed generate test data for an unbiased comparison these This provides realistic simulated patient and independent different from any computational method. The flow contrast agent solute blood through cerebral vasculature with disease-specific configurations simulated. Blood dynamics modeled as a combination convection diffusion in tubular networks. arterial microvascular arterial-input time-concentration curves wide range statuses. configured represent embolic stroke one middle artery territory physiologically plausible vascular dispersion operators major arteries tissue retention functions. These fit simpler template allow use results multiple validation studies. gamma-variate function parameters operator, boxcar exponential decay function. Such should be used create that better assess strengths weaknesses various analysis

参考文章(62)
D. J. Hawkes, A. C. F. Colchester, J. N. H. Brunt, D. A. G. Wicks, G. H. Du Boulay, A. Wallis, Development of a Model to Predict the Potential Accuracy of Vessel Blood Flow Measurements from Dynamic Angiographic Recordings Mathematics and Computer Science in Medical Imaging. pp. 469- 478 ,(1988) , 10.1007/978-3-642-83306-9_25
SuiPing Huang, Brian E. Chapman, Joseph B. Muhlestein, Duane D. Blatter, Dennis L. Parker, Computer Simulation of Convection and Diffusion Effects on Velocity Estimations from X-Ray Contrast Density Time Curves information processing in medical imaging. pp. 453- 458 ,(1997) , 10.1007/3-540-63046-5_42
T Warabi, K Aoki, T Yoshida, A Narita, K Miyasaka, B C Chu, Flow volume in the common carotid artery detected by color duplex sonography: an approach to the normal value and predictability of cerebral blood flow Radiation Medicine. ,vol. 18, pp. 239- 244 ,(2000)
W P J Holland, Indicator dilution theory for convective dispersion in laminar flow through straight tubes Physics in Medicine and Biology. ,vol. 27, pp. 639- 664 ,(1982) , 10.1088/0031-9155/27/5/001
Robert M. Weisskoff, David Chesler, Jerrold L. Boxerman, Bruce R. Rosen, Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? Magnetic Resonance in Medicine. ,vol. 29, pp. 553- 558 ,(1993) , 10.1002/MRM.1910290420
Maithili Sharan, M. D. Jones, R. C. Koehler, R. J. Traystman, A. S. Popel, A compartmental model for oxygen transport in brain microcirculation Annals of Biomedical Engineering. ,vol. 17, pp. 13- 38 ,(1989) , 10.1007/BF02364271
Masanobu Ibaraki, Eku Shimosegawa, Hideto Toyoshima, Kazuhiro Takahashi, Shuichi Miura, Iwao Kanno, Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. Journal of Cerebral Blood Flow and Metabolism. ,vol. 25, pp. 378- 390 ,(2005) , 10.1038/SJ.JCBFM.9600037
Linda Knutsson, Elna-Marie Larsson, Oliver Thilmann, Freddy Ståhlberg, Ronnie Wirestam, Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. Journal of Magnetic Resonance Imaging. ,vol. 23, pp. 444- 453 ,(2006) , 10.1002/JMRI.20535
Evert-jan P.A. Vonken, Freek J. Beekman, Chris J.G. Bakker, Max A. Viergever, Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine. ,vol. 41, pp. 343- 350 ,(1999) , 10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T