Fibro-Adipogenic Remodeling of the Diaphragm in Obesity-Associated Respiratory Dysfunction

作者: Eric D. Buras , Kimber Converso-Baran , Carol S. Davis , Takeshi Akama , Fumihito Hikage

DOI: 10.2337/DB18-0209

关键词:

摘要: Respiratory dysfunction is a common complication of obesity, conferring cardiovascular morbidity and increased mortality often necessitating mechanical ventilatory support. While impaired lung expansion in the setting adipose mass reduced central response to hypercapnia have been implicated as pathophysiological drivers, impact obesity on respiratory muscles-in particular, diaphragm-has not investigated detail. Here, we demonstrate that chronic high-fat diet (HFD) feeding impairs diaphragm muscle function, assessed vivo by ultrasonography ex measurement contractile force. During an HFD time course, progressive tissue collagen deposition within parallel deficits. Moreover, intradiaphragmatic fibro-adipogenic progenitors (FAPs) proliferate with long-term while giving rise adipocytes type I collagen-depositing fibroblasts. Thrombospondin 1 (THBS1), circulating adipokine, increases induces FAP proliferation. These findings suggest novel role for FAP-mediated remodeling obesity-associated dysfunction.

参考文章(48)
Dario R Lemos, Farshad Babaeijandaghi, Marcela Low, Chih-Kai Chang, Sunny T Lee, Daniela Fiore, Regan-Heng Zhang, Anuradha Natarajan, Sergei A Nedospasov, Fabio M V Rossi, Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors Nature Medicine. ,vol. 21, pp. 786- 794 ,(2015) , 10.1038/NM.3869
Jay S. Balachandran, Juan Fernando Masa, Babak Mokhlesi, Obesity Hypoventilation Syndrome Epidemiology and Diagnosis. Sleep Medicine Clinics. ,vol. 9, pp. 341- 347 ,(2014) , 10.1016/J.JSMC.2014.05.007
A. Uezumi, T. Ito, D. Morikawa, N. Shimizu, T. Yoneda, M. Segawa, M. Yamaguchi, R. Ogawa, M. M. Matev, Y. Miyagoe-Suzuki, S. Takeda, K. Tsujikawa, K. Tsuchida, H. Yamamoto, S.-i. Fukada, Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science. ,vol. 124, pp. 3654- 3664 ,(2011) , 10.1242/JCS.086629
A Uezumi, S Fukada, N Yamamoto, M Ikemoto-Uezumi, M Nakatani, M Morita, A Yamaguchi, H Yamada, I Nishino, Y Hamada, K Tsuchida, Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death and Disease. ,vol. 5, ,(2014) , 10.1038/CDDIS.2014.161
Mark Pickering, James F. X. Jones, The diaphragm: two physiological muscles in one. Journal of Anatomy. ,vol. 201, pp. 305- 312 ,(2002) , 10.1046/J.1469-7580.2002.00095.X
Jose E. Heredia, Lata Mukundan, Francis M. Chen, Alisa A. Mueller, Rahul C. Deo, Richard M. Locksley, Thomas A. Rando, Ajay Chawla, Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. ,vol. 153, pp. 376- 388 ,(2013) , 10.1016/J.CELL.2013.02.053
Aaron W. B. Joe, Lin Yi, Anuradha Natarajan, Fabien Le Grand, Leslie So, Joy Wang, Michael A. Rudnicki, Fabio M. V. Rossi, Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis Nature Cell Biology. ,vol. 12, pp. 153- 163 ,(2010) , 10.1038/NCB2015
Dawn K Richardson, Sangeeta Kashyap, Mandeep Bajaj, Kenneth Cusi, Steven J Mandarino, Jean Finlayson, Ralph A DeFronzo, Christopher P Jenkinson, Lawrence J Mandarino, None, Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. Journal of Biological Chemistry. ,vol. 280, pp. 10290- 10297 ,(2005) , 10.1074/JBC.M408985200
Akiyoshi Uezumi, So-ichiro Fukada, Naoki Yamamoto, Shin'ichi Takeda, Kunihiro Tsuchida, Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle Nature Cell Biology. ,vol. 12, pp. 143- 152 ,(2010) , 10.1038/NCB2014
J. Flier, K. Cook, P Usher, B. Spiegelman, Severely impaired adipsin expression in genetic and acquired obesity. Science. ,vol. 237, pp. 405- 408 ,(1987) , 10.1126/SCIENCE.3299706