Thermoelectric Transport Properties of CuFeInTe3

作者: H Cabrera , I Zumeta-Dubé , D Korte , P Grima-Gallardo , F Alvarado

DOI: 10.1016/J.JALLCOM.2015.08.128

关键词:

摘要: Abstract In this paper we report on the preparation of CuFeInTe3 and its thermoelectric properties. Optical diffuse reflectance Raman scattering spectroscopies, as well X-ray powder diffraction were also carried out. Unprecedented for CuFeInTe3, a direct an indirect band gap found from absorption spectrum. From Hall effect measurements at 300 K carrier concentration (n), electrical conductivity (σ) mobility (μ) determined. order to investigate whether material is suitable applications, Seebeck coefficient (S), thermal (κ) σ function temperature measured. The coefficients showed that alloying CuInTe2 with Fe2+ produces change original p-type n-type causes decrease in κ value, while leaving unchanged. Relatively large S values respect CuInTe2, which explained basis probable electron effective mass increase due incorporation. It was found, conductivities increasing range between 300 450 K, figure merit (zT) reaches 0.075 0.126 at 450 K respectively. Thus, zT increases temperature, reaching larger than those reported CuInTe2.

参考文章(37)
Stanford University. Microwave Laboratory, Physical Properties of SmB6 Physical Review B. ,vol. 3, pp. 2030- 2042 ,(1971) , 10.1103/PHYSREVB.3.2030
David Michael Rowe, CRC Handbook of Thermoelectrics CRC Press. ,(1995) , 10.1201/9781420049718
P Prabukanthan, R Dhanasekaran, None, Growth of CuInTe2 single crystals by iodine transport and their characterization Materials Research Bulletin. ,vol. 43, pp. 1996- 2004 ,(2008) , 10.1016/J.MATERRESBULL.2007.10.004
A. C. Boccara, D. Fournier, J. Badoz, Thermo‐optical spectroscopy: Detection by the ’’mirage effect’’ Applied Physics Letters. ,vol. 36, pp. 130- 132 ,(1980) , 10.1063/1.91395
Y Aikebaier, K Kurosaki, T Sugahara, Y Ohishi, H Muta, S Yamanaka, None, High-temperature thermoelectric properties of non-stoichiometric Ag1 − xInTe2 with chalcopyrite structure Materials Science and Engineering B-advanced Functional Solid-state Materials. ,vol. 177, pp. 999- 1002 ,(2012) , 10.1016/J.MSEB.2012.04.025
Johanna D Burnett, Olivier Gourdon, Kulugammana GS Ranmohotti, Nathan J Takas, Honore Djieutedjeu, Pierre FP Poudeu, Jennifer A Aitken, None, Structure–property relationships along the Fe-substituted CuInS2 series: Tuning of thermoelectric and magnetic properties Materials Chemistry and Physics. ,vol. 147, pp. 17- 27 ,(2014) , 10.1016/J.MATCHEMPHYS.2014.03.034
P. Grima-Gallardo, F. Alvarado, M. Muñoz, S. Durán, M. Quintero, L. Nieves, E. Quintero, R. Tovar, M. Morocoima, M. A. Ramos, Superparamagnetism in CuFeInTe3 and CuFeGaTe3 alloys Physica Status Solidi (a). ,vol. 209, pp. 1141- 1143 ,(2012) , 10.1002/PSSA.201127663
Ruiheng Liu, Lili Xi, Huili Liu, Xun Shi, Wenqing Zhang, Lidong Chen, Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure Chemical Communications. ,vol. 48, pp. 3818- 3820 ,(2012) , 10.1039/C2CC30318C
P. Grima-Gallardo, S. Torres, M. Quintero, L. Nieves, E. Moreno, G.E. Delgado, Phase Diagram of (CuInSe2)1−x(FeSe)x alloys Journal of Alloys and Compounds. ,vol. 630, pp. 146- 150 ,(2015) , 10.1016/J.JALLCOM.2015.01.015