Finding Low-Rank Solutions via Non-Convex Matrix Factorization, Efficiently and Provably

作者: Constantine Caramanis , Sujay Sanghavi , Anastasios Kyrillidis , Dohyung Park

DOI:

关键词:

摘要: … in optimization: eg, consider the minimization of a convex function f(X) over rank-r matrices, where the set of low-rank … • When f is only (restricted) smooth, we show that a simple lifting …

参考文章(91)
Nicolas Usunier, Samy Bengio, Jason Weston, WSABIE: scaling up to large vocabulary image annotation international joint conference on artificial intelligence. pp. 2764- 2770 ,(2011) , 10.5591/978-1-57735-516-8/IJCAI11-460
Michael B. Cohen, Jelani Nelson, David P. Woodruff, Optimal approximate matrix product in terms of stable rank arXiv: Data Structures and Algorithms. ,(2015)
R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods Society for Industrial and Applied Mathematics. ,(1998) , 10.1137/1.9780898719628
David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, Jens Eisert, Quantum state tomography via compressed sensing. Physical Review Letters. ,vol. 105, pp. 150401- ,(2010) , 10.1103/PHYSREVLETT.105.150401
Andrew I. Schein, Lawrence K. Saul, Lyle H. Ungar, A Generalized Linear Model for Principal Component Analysis of Binary Data. international conference on artificial intelligence and statistics. ,(2003)
Inderjit S. Dhillon, Prateek Jain, Raghu Meka, Guaranteed Rank Minimization via Singular Value Projection neural information processing systems. ,vol. 23, pp. 937- 945 ,(2010)
Martin Jaggi, Marek Sulovsky, A Simple Algorithm for Nuclear Norm Regularized Problems international conference on machine learning. pp. 471- 478 ,(2010)
P. Drineas, R. Kannan, Fast Monte-Carlo algorithms for approximate matrix multiplication international conference on cluster computing. pp. 452- 459 ,(2001) , 10.1109/SFCS.2001.959921
Srinadh Bhojanapalli, Sujay Sanghavi, Rachel Ward, Yudong Chen, Coherent Matrix Completion international conference on machine learning. pp. 674- 682 ,(2014)
Yi-Kai Liu, Universal low-rank matrix recovery from Pauli measurements arXiv: Quantum Physics. ,(2011)