Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay

作者: Laurent Perreard , Cheng Fan , John F Quackenbush , Michael Mullins , Nicholas P Gauthier

DOI: 10.1186/BCR1399

关键词:

摘要: Predicting the clinical course of breast cancer is often difficult because it a diverse disease comprised many biological subtypes. Gene expression profiling by microarray analysis has identified signatures that are important for prognosis and treatment. In current article, we use real-time quantitative reverse-transcription (qRT)-PCR assay to risk-stratify cancers based on 'intrinsic' subtypes proliferation. sets were selected from data assess proliferation classify into four different molecular subtypes, designated Luminal, Normal-like, HER2+/ER-, Basal-like. One-hundred twenty-three samples (117 invasive carcinomas, one fibroadenoma five normal tissues) three cell lines prospectively analyzed using (Agilent) qRT-PCR 53 genes. Biological assigned hierarchical clustering. A signature was used as single meta-gene (log2 average 14 genes) predict outcome within context estrogen receptor status subtype. We found could determine intrinsic subtype (93% concordance with microarray-based assignments) predictive outcome. The provided additional prognostic information patients Luminal (P = 0.0012), receptor-positive tumors 3.4 × 10-6). High in conferred 19-fold relative risk relapse (confidence interval 95%) compared low can recapitulate classifications offers an objective measurement grade adds significant

参考文章(36)
Maureen Cronin, Mylan Pho, Debjani Dutta, James C. Stephans, Steven Shak, Michael C. Kiefer, Jose M. Esteban, Joffre B. Baker, Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. American Journal of Pathology. ,vol. 164, pp. 35- 42 ,(2004) , 10.1016/S0002-9440(10)63093-3
Randy Rasmussen, Quantification on the LightCycler Springer, Berlin, Heidelberg. pp. 21- 34 ,(2001) , 10.1007/978-3-642-59524-0_3
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
I.M. Leigh, J. Taylor-Papadimitriou, E.B. Lane, A. Lewis, M. Boshell, M. Stampfer, J. Bartek, Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. Journal of Cell Science. ,vol. 94, pp. 403- 413 ,(1989) , 10.1242/JCS.94.3.403
Douglas T Ross, Uwe Scherf, Michael B Eisen, Charles M Perou, Christian Rees, Paul Spellman, Vishwanath Iyer, Stefanie S Jeffrey, Matt Van de Rijn, Mark Waltham, Alexander Pergamenschikov, JC Lee, Deval Lashkari, Dari Shalon, Timothy G Myers, John N Weinstein, David Botstein, Patrick O Brown, None, Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics. ,vol. 24, pp. 227- 235 ,(2000) , 10.1038/73432
Lars Bullinger, Konstanze Döhner, Eric Bair, Stefan Fröhling, Richard F. Schlenk, Robert Tibshirani, Hartmut Döhner, Jonathan R. Pollack, Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia New England Journal of Medicine. ,vol. 350, pp. 1605- 1616 ,(2004) , 10.1056/NEJMOA031046
C. Sotiriou, S.-Y. Neo, L. M. McShane, E. L. Korn, P. M. Long, A. Jazaeri, P. Martiat, S. B. Fox, A. L. Harris, E. T. Liu, Breast cancer classification and prognosis based on gene expression profiles from a population-based study Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 10393- 10398 ,(2003) , 10.1073/PNAS.1732912100