Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development.

作者: M. J. Herriges , D. T. Swarr , M. P. Morley , K. S. Rathi , T. Peng

DOI: 10.1101/GAD.238782.114

关键词:

摘要: Long noncoding RNAs (lncRNAs) are thought to play important roles in regulating gene transcription, but few have well-defined expression patterns or known biological functions during mammalian development. Using a conservative pipeline identify lncRNAs that functions, we identified 363 the lung and foregut endoderm. Importantly, show these spatially correlated with transcription factors across genome. In-depth analyses of genomic loci adjacent critical Nkx2.1, Gata6, Foxa2 (forkhead box a2), Foxf1 mimic their protein-coding neighbor. Loss-of-function analysis demonstrates two lncRNAs, LL18/NANCI (Nkx2.1-associated intergenic RNA) LL34, distinct endoderm development by controlling developmental pathways, including retinoic acid signaling. In particular, acts upstream Nkx2.1 downstream from Wnt signaling regulate expression. These studies reveal an role multiple aspects often through regulation factor

参考文章(83)
A L Folpe, A M Gown, R Garcia, R A Schmidt, D H Dail, R J Zarbo, L W Lamps, Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Modern Pathology. ,vol. 12, pp. 5- 8 ,(1999)
Victoria A. Moran, Courtney N. Niland, Ahmad M. Khalil, Co-Immunoprecipitation of Long Noncoding RNAs Methods in Molecular Biology. ,vol. 925, pp. 219- 228 ,(2012) , 10.1007/978-1-62703-011-3_15
Wellington V. Cardoso, Tushar Desai, Jun Qian, Karen Niederreither, Jining Lu, Felicia Chen, INHIBITION OF TGF BETA SIGNALING BY ENDOGENOUS RETINOIC ACID IS ESSENTIAL FOR PRIMARY LUNG BUD INDUCTION The FASEB Journal. ,vol. 21, ,(2007) , 10.1096/FASEBJ.21.5.A199-B
Charles Elkan, Timothy L. Bailey, Fitting a mixture model by expectation maximization to discover motifs in biopolymers. intelligent systems in molecular biology. ,vol. 2, pp. 28- 36 ,(1994)
Ritsuko Tanaka, Hitoshi Satoh, Masatsugu Moriyama, Kasumi Satoh, Yasuyuki Morishita, Syouko Yoshida, Toshiki Watanabe, Yoshikazu Nakamura, Shigeo Mori, Intronic U50 small‐nucleolar‐RNA (snoRNA) host gene of no protein‐coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B‐cell lymphoma Genes to Cells. ,vol. 5, pp. 277- 287 ,(2000) , 10.1046/J.1365-2443.2000.00325.X
Alexander Favorov, Loris Mularoni, Leslie M. Cope, Yulia Medvedeva, Andrey A. Mironov, Vsevolod J. Makeev, Sarah J. Wheelan, Exploring Massive, Genome Scale Datasets with the GenometriCorr Package PLoS Computational Biology. ,vol. 8, pp. e1002529- ,(2012) , 10.1371/JOURNAL.PCBI.1002529
P. Szafranski, A. V. Dharmadhikari, E. Brosens, P. Gurha, K. E. Kolodziejska, O. Zhishuo, P. Dittwald, T. Majewski, K. N. Mohan, B. Chen, R. E. Person, D. Tibboel, A. de Klein, J. Pinner, M. Chopra, G. Malcolm, G. Peters, S. Arbuckle, S. F. Guiang, V. A. Hustead, J. Jessurun, R. Hirsch, D. P. Witte, I. Maystadt, N. Sebire, R. Fisher, C. Langston, P. Sen, P. Stankiewicz, Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder Genome Research. ,vol. 23, pp. 23- 33 ,(2013) , 10.1101/GR.141887.112
Andrea Ventura, Amanda G. Young, Monte M. Winslow, Laura Lintault, Alex Meissner, Stefan J. Erkeland, Jamie Newman, Roderick T. Bronson, Denise Crowley, James R. Stone, Rudolf Jaenisch, Phillip A. Sharp, Tyler Jacks, Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters Cell. ,vol. 132, pp. 875- 886 ,(2008) , 10.1016/J.CELL.2008.02.019
J. Zhao, B. K. Sun, J. A. Erwin, J.-J. Song, J. T. Lee, Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome Science. ,vol. 322, pp. 750- 756 ,(2008) , 10.1126/SCIENCE.1163045
Giorgio Dieci, Milena Preti, Barbara Montanini, Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. ,vol. 94, pp. 83- 88 ,(2009) , 10.1016/J.YGENO.2009.05.002