Evidence for the involvement of the noradrenergic system, dopaminergic and imidazoline receptors in the antidepressant-like effect of tramadol in mice

作者: Cristiano R Jesse , Ethel A Wilhelm , Cristiani F Bortolatto , Cristina W Nogueira , None

DOI: 10.1016/J.PBB.2010.02.011

关键词:

摘要: The involvement of the noradrenergic system, imidazoline, dopaminergic and adenosinergic receptors in antidepressant-like action tramadol mouse forced swimming test (FST) was evaluated this study. effect (40mg/kg, per oral, p.o.) FST blocked with yohimbine (1mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), alpha-methyl-para-tyrosine methyl ester (AMPT, 100mg/kg, inhibitor tyrosine hydroxylase), efaroxan imidazoline I(1)/alpha(2)-adrenoceptor idazoxan (0.06mg/kg, I(2)/alpha(2)-adrenoceptor antazoline (5mg/kg, a ligand high affinity for I(2) receptor), haloperidol (0.2mg/kg, non selective dopamine receptor SCH23390 (0.05mg/kg, subcutaneously, s.c., D(1) sulpiride (50mg/kg, D(2) D(3) antagonist) but not reversed by prazosin intraperitoneally, alpha(1)-adrenoceptor caffeine (3mg/kg, nonselective adenosine antagonist). Monoamine oxidase-A -B (MAO-A MAO-B) activities were neither inhibited whole brain nor specific regions mice treated tramadol. These data demonstrated that caused oral administration is mediated receptors.

参考文章(59)
Andrew Holt, Imidazoline binding sites on receptors and enzymes: emerging targets for novel antidepressant drugs? Journal of Psychiatry & Neuroscience. ,vol. 28, pp. 409- 414 ,(2003)
T de Boer, The pharmacologic profile of mirtazapine. The Journal of Clinical Psychiatry. ,vol. 57, pp. 19- 25 ,(1996)
H H Hennies, J Schneider, E Friderichs, Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Drug Research. ,vol. 38, pp. 877- 880 ,(1988)
Robert B. Raffa, Jeffry L. Vaught, Richard P. Shank, Ellen E. Codd, Elmar Friderichs, Wolfgang Reimann, Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an 'atypical' opioid analgesic. Journal of Pharmacology and Experimental Therapeutics. ,vol. 260, pp. 275- 285 ,(1992)
Nathan A. Shapira, Brian J. McConville, M. Lisa Pagnucco, Andrew B. Norman, Paul E. Keck, Novel Use of Tramadol Hydrochloride in the Treatment of Tourette’s Syndrome The Journal of Clinical Psychiatry. ,vol. 58, pp. 174- 175 ,(1997) , 10.4088/JCP.V58N0407B
Jerzy Maj, Marta Dziedzicka-Wasylewska, Renata Rogoż, Zofia Rogóż, Grażyna Skuza, Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist, [3H]N-0437, to dopamine D2 receptors in the rat brain. European Journal of Pharmacology. ,vol. 304, pp. 49- 54 ,(1996) , 10.1016/0014-2999(96)00123-9
Manuella P Kaster, Adair RS Santos, Ana LS Rodrigues, None, Involvement of 5-HT1A receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test. Brain Research Bulletin. ,vol. 67, pp. 53- 61 ,(2005) , 10.1016/J.BRAINRESBULL.2005.05.025
Cristina Lanni, Stefano Govoni, Adele Lucchelli, Cinzia Boselli, Depression and antidepressants: molecular and cellular aspects Cellular and Molecular Life Sciences. ,vol. 66, pp. 2985- 3008 ,(2009) , 10.1007/S00018-009-0055-X
P. Lakshmi Reddy, Sumant Khanna, M.N. Subhash, S.M. Channabasavanna, B.S. Sridhara Rama Rao, CSF amine metabolites in depression Biological Psychiatry. ,vol. 31, pp. 112- 118 ,(1992) , 10.1016/0006-3223(92)90198-9
MO Rojas-Corrales, E Berrocoso, J Gibert-Rahola, JA Mico, Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sciences. ,vol. 72, pp. 143- 152 ,(2002) , 10.1016/S0024-3205(02)02220-8