Discovery and Mechanism Study of SIRT1 Activators that Promote the Deacetylation of Fluorophore-Labeled Substrate

作者: Jiahui Wu , Dengyou Zhang , Lei Chen , Jianneng Li , Jianling Wang

DOI: 10.1021/JM301032J

关键词:

摘要: SIRT1 is an NAD(+)-dependent deacetylase, whose activators have potential therapeutic applications in age-related diseases. Here we report a new class of activators. The activation dependent on the fluorophore labeled to substrate. To elucidate mechanism, solved crystal structure SIRT3/ac-RHKK(ac)-AMC complex. revealed that blocked H-bond formation and created cavity between substrate Rossmann fold. We built SIRT1/ac-RHKK(ac)-AMC complex model based structure. K(m) K(d) determinations demonstrated decreased peptide binding affinity. modes indicated portion interacts with through π-stacking, while other inserts into or fold, thus increasing Our study provides insights mechanism may aid design novel

参考文章(61)
Zbyszek Otwinowski, Wladek Minor, Processing of X-ray diffraction data collected in oscillation mode Methods in Enzymology. ,vol. 276, pp. 307- 326 ,(1997) , 10.1016/S0076-6879(97)76066-X
Mutasem Omar Sinnokrot, C. David Sherrill, Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations Journal of the American Chemical Society. ,vol. 126, pp. 7690- 7697 ,(2004) , 10.1021/JA049434A
Liping Qiao, Jianhua Shao, SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. Journal of Biological Chemistry. ,vol. 281, pp. 39915- 39924 ,(2006) , 10.1074/JBC.M607215200
Frédéric Picard, Martin Kurtev, Namjin Chung, Acharawan Topark-Ngarm, Thanaset Senawong, Rita Machado de Oliveira, Mark Leid, Michael W. McBurney, Leonard Guarente, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. ,vol. 429, pp. 771- 776 ,(2004) , 10.1038/NATURE02583
Inacrist Geronimo, Eun Cheol Lee, N. Jiten Singh, Kwang S. Kim, How Different are Electron-Rich and Electron-Deficient π Interactions? Journal of Chemical Theory and Computation. ,vol. 6, pp. 1931- 1934 ,(2010) , 10.1021/CT100182U
K. Sakaguchi, J. E. Herrera, S.'i. Saito, T. Miki, M. Bustin, A. Vassilev, C. W. Anderson, E. Appella, DNA damage activates p53 through a phosphorylation–acetylation cascade Genes & Development. ,vol. 12, pp. 2831- 2841 ,(1998) , 10.1101/GAD.12.18.2831
José L. Avalos, Jef D. Boeke, Cynthia Wolberger, Structural Basis for the Mechanism and Regulation of Sir2 Enzymes Molecular Cell. ,vol. 13, pp. 639- 648 ,(2004) , 10.1016/S1097-2765(04)00082-6
Jinrong Min, Joseph Landry, Rolf Sternglanz, Rui-Ming Xu, Crystal Structure of a SIR2 Homolog–NAD Complex Cell. ,vol. 105, pp. 269- 279 ,(2001) , 10.1016/S0092-8674(01)00317-8
J. Landry, A. Sutton, S. T. Tafrov, R. C. Heller, J. Stebbins, L. Pillus, R. Sternglanz, The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 5807- 5811 ,(2000) , 10.1073/PNAS.110148297