Poly(ADP-ribose): PARadigms and PARadoxes

作者: Alexander Bürkle , László Virág , None

DOI: 10.1016/J.MAM.2012.12.010

关键词:

摘要: Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification (PTM) catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARPs use NAD(+) as substrate and upon cleaving off nicotinamide they transfer ADP-ribosyl moiety covalently to suitable acceptor proteins elongate chain adding further ADP-ribose units create branched polymer, termed (PAR), which rapidly degraded glycohydrolase (PARG) ADP-ribosylhydrolase 3 (ARH3). In recent years several key discoveries changed way we look at biological roles mode operation PARylation. These paradigm shifts include but are not limited (1) single PARP expanding family; (2) DNA-break dependent activation extended other DNA independent PARP-activation mechanisms; (3) one molecular mechanism (covalent PARylation target proteins) underlying effect now complemented mechanisms such protein-protein interactions, PAR signaling, modulation pools (4) principal role in damage sensing expanded numerous, diverse functions identifying PARP-1 real moonlighting protein. Here review most important research also highlight some many controversial issues (or paradoxes) field mostly synergistic antagonistic effects PARG; mitochondrial decomposition, cross-talk between signaling pathways (protein kinases, phosphatases, calcium) divergent PARP/PARylation longevity age-related diseases.

参考文章(144)
S. Shall, Gilbert de Murcia, From DNA damage and stress signalling to cell death : poly-ADP-ribosylation reactions Oxford University Press. ,(2000)
Yasuharu Tanaka, Samuel S. Koide, Koichiro Yoshihara, Tomoya Kamiya, Poly(ADP-ribose) synthetase is phosphorylated by protein kinase C invitro Biochemical and Biophysical Research Communications. ,vol. 148, pp. 709- 717 ,(1987) , 10.1016/0006-291X(87)90934-X
Yichen Lai, Yaming Chen, Simon C. Watkins, Paula D. Nathaniel, Fengli Guo, Patrick M. Kochanek, Larry W. Jenkins, Csaba Szabó, Robert S. B. Clark, Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury Journal of Neurochemistry. ,vol. 104, pp. 1700- 1711 ,(2008) , 10.1111/J.1471-4159.2007.05114.X
Masanao Miwa, Takashi Sugimura, Splitting of the Ribose-Ribose Linkage of Poly(Adenosine Diphosphate-Ribose) by a Calf Thymus Extract Journal of Biological Chemistry. ,vol. 246, pp. 6362- 6364 ,(1971) , 10.1016/S0021-9258(18)61798-3
T Kurosaki, H Ushiro, Y Mitsuuchi, S Suzuki, M Matsuda, Y Matsuda, N Katunuma, K Kangawa, H Matsuo, T Hirose, Primary structure of human poly(ADP-ribose) synthetase as deduced from cDNA sequence. Journal of Biological Chemistry. ,vol. 262, pp. 15990- 15997 ,(1987) , 10.1016/S0021-9258(18)47687-9
Yasutomi Nishizuka, Kunihiro Ueda, Kinya Nakazawa, Osamu Hayaishi, Studies on the Polymer of Adenosine Diphosphate Ribose Journal of Biological Chemistry. ,vol. 242, pp. 3164- 3171 ,(1967) , 10.1016/S0021-9258(18)95947-8
Thomas B. L. Kirkwood, Steven N. Austad, Why do we age Nature. ,vol. 408, pp. 233- 238 ,(2000) , 10.1038/35041682
Fanyan Meng, Haijun Zhang, Gang Liu, Bas Kreike, Wei Chen, Seema Sethi, Fred R. Miller, Guojun Wu, p38γ mitogen-activated protein kinase contributes to oncogenic properties maintenance and resistance to poly (ADP-ribose)-polymerase-1 inhibition in breast cancer. Neoplasia. ,vol. 13, pp. 472- 482 ,(2011) , 10.1593/NEO.101748
Carles Cantó, Anthony A. Sauve, Peter Bai, Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes Molecular Aspects of Medicine. ,vol. 34, pp. 1168- 1201 ,(2013) , 10.1016/J.MAM.2013.01.004