Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain.

作者: J. A. Mindell , R. J. Collier , J. A. Silverman , Wei Hai Shen , A. Finkelstein

DOI: 10.1016/S0021-9258(17)31678-2

关键词: ToxinStereochemistryMembraneCytoplasmVero cellTransmembrane proteinMutantTransmembrane domainChemistryDiphtheria toxin

摘要: Entry of the catalytic domain diphtheria toxin into cytoplasma eukaryotic cells depends on insertion T (transmembrane) endosomal membrane, a process triggered by low pH. To probe mechanism insertion, we mutated ionizable residues within helical hairpin region domain. Only three mutations caused significant effects cytotoxicity, D295K, E349K, and D352K. Each these represents substitution basic for an acidic residue at tip hairpin. Substitution Lys Glu349 or Asp352, in TH8/9 hairpin, reduced toxicity Vero > 100-fold, whereas Asp295, one 3 TH5/6/7 less marked reduction. All also altered pH-dependent formation, and/or ion conductance, channels formed artificial bilayers plasma membrane. E349K D352K did not alter pH dependence conformational changes occurring near 5. Our findings support hypothesis that inserts membrane after pH-mediated partial unfolding A positive this apparently inhibits blocks action. The ion-conducting properties selected mutants, described elsewhere, are consistent with model. status integral form remains uncertain.

参考文章(48)
E. Papini, D. Sandoná, R. Rappuoli, C. Montecucco, On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. The EMBO Journal. ,vol. 7, pp. 3353- 3359 ,(1988) , 10.1002/J.1460-2075.1988.TB03207.X
B. A. Wilson, R. J. Collier, Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism. Current Topics in Microbiology and Immunology. ,vol. 175, pp. 27- 41 ,(1992) , 10.1007/978-3-642-76966-5_2
M. Montal, [50] Formation of bimolecular membranes from lipid monolayers Biomembranes Part B. ,vol. 32, pp. 545- 554 ,(1974) , 10.1016/0076-6879(74)32053-8
K. Kim, N. B. Groman, In Vitro Inhibition of Diphtheria Toxin Action by Ammonium Salts and Amines Journal of Bacteriology. ,vol. 90, pp. 1552- 1556 ,(1965) , 10.1128/JB.90.6.1552-1556.1965
Stephen F Carroll, R John Collier, [31] Diphtheria toxin: Quantification and assay Methods in Enzymology. ,vol. 165, pp. 218- 225 ,(1988) , 10.1016/S0076-6879(88)65034-8
R. Rappuoli, M. Murgia, C. Montecucco, E. Papini, Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. Journal of Biological Chemistry. ,vol. 268, pp. 1567- 1574 ,(1993) , 10.1016/S0021-9258(18)53890-4
V W Hu, R K Holmes, Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes. Journal of Biological Chemistry. ,vol. 259, pp. 12226- 12233 ,(1984) , 10.1016/S0021-9258(20)71343-8
M E Dumont, F M Richards, The pH-dependent conformational change of diphtheria toxin. Journal of Biological Chemistry. ,vol. 263, pp. 2087- 2097 ,(1988) , 10.1016/S0021-9258(19)77988-5
K Sandvig, S Olsnes, Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. Journal of Biological Chemistry. ,vol. 263, pp. 12352- 12359 ,(1988) , 10.1016/S0021-9258(18)37762-7