A combinatorial computational approach for drug discovery against AIDS: Machine learning and proteochemometrics

作者: Sofia D’souza , Prema K. V. , Seetharaman Balaji

DOI: 10.1007/978-3-030-29022-1_11

关键词: Computer scienceDrug discoveryDrugDrug repositioningTreatment efficacyMachine learningArtificial intelligenceContext (language use)Precision medicineIdentification (information)Virtual screening

摘要: Computational methods have been widely used in drug discovery including identification of novel targets, studying target interactions, and virtual screening compounds against known targets. Machine learning techniques predictions targets drugs with greater accuracy compared to other methods. algorithms also predicting the progression disease, resistance a virus, treatment efficacy prediction, effectiveness combinational therapy respect HIV-1. In this article, we focused on some machine context viral disease. brief, great potential discovery, repurposing, precision medicine.

参考文章(44)
Christiane Paatz, Brigitte Moschik, Klaus Korn, Klaus Überla, Martin Helm, Barbara Schmidt, Hauke Walter, Astrid Rascu, Thomas Harrer, Michael Kurowski, Phenotypic HIV-1 resistance correlates with treatment outcome of nelfinavir salvage therapy. Antiviral Therapy. ,vol. 5, pp. 249- 256 ,(2000)
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
T. Pumarola, M. Opravil, N. Hellmann, L. Bacheler, M. Salminen, N. Clumeck, A. Hatzakis, J. Schapiro, A. Horban, A. M. Vandamme, S. Staszewski, J. Albert, L. Palmisano, R. Camacho, S. Vella, D. Kempf, V. Soriano, A. Phillips, L. Perrin, W. W. Hall, B. Schmidt, R. Schuurman, G. Gatti, M. Miller, J. C. Schmit, D. Banhegyi, J. Gerstoft, A. Sönnerborg, J. D. Lundgren, V. Miller, C. F. Perno, C. Nielsen, J. L. Faudon, L. Ruiz, B. Asjo, C. Boucher, A. De Luca, D. Pillay, F. Brun-Vézinet, P. Clevenbergh, H. W. Doerr, M. Youle, T. W. Myers, E. Shulse, N. Dedes, M. Ait-Khaled, R. Ziermann, Updated European recommendations for the clinical use of HIV drug resistance testing Antiviral Therapy. ,vol. 9, pp. 829- 848 ,(2004)
M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science. ,vol. 349, pp. 255- 260 ,(2015) , 10.1126/SCIENCE.AAA8415
Qi Huang, Haixiao Jin, Qi Liu, Qiong Wu, Hong Kang, Zhiwei Cao, Ruixin Zhu, Proteochemometric Modeling of the Bioactivity Spectra of HIV-1 Protease Inhibitors by Introducing Protein-Ligand Interaction Fingerprint PLoS ONE. ,vol. 7, pp. e41698- ,(2012) , 10.1371/JOURNAL.PONE.0041698
Judith Schouten, Paola Cinque, Magnus Gisslen, Peter Reiss, Peter Portegies, HIV-1 infection and cognitive impairment in the cART era: a review. AIDS. ,vol. 25, pp. 561- 575 ,(2011) , 10.1097/QAD.0B013E3283437F9A
Muhammad Junaid, Maris Lapins, Martin Eklund, Ola Spjuth, Jarl E. S. Wikberg, Proteochemometric Modeling of the Susceptibility of Mutated Variants of the HIV-1 Virus to Reverse Transcriptase Inhibitors PLoS ONE. ,vol. 5, pp. e14353- ,(2010) , 10.1371/JOURNAL.PONE.0014353
Maris Lapins, Martin Eklund, Ola Spjuth, Peteris Prusis, Jarl ES Wikberg, Proteochemometric modeling of HIV protease susceptibility BMC Bioinformatics. ,vol. 9, pp. 181- 181 ,(2008) , 10.1186/1471-2105-9-181
Maris Lapins, Jarl E. S. Wikberg, Proteochemometric Modeling of Drug Resistance over the Mutational Space for Multiple HIV Protease Variants and Multiple Protease Inhibitors Journal of Chemical Information and Modeling. ,vol. 49, pp. 1202- 1210 ,(2009) , 10.1021/CI800453K
Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson, Robert P. Sheridan, Bradley P. Feuston, Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences. ,vol. 43, pp. 1947- 1958 ,(2003) , 10.1021/CI034160G