Fast Metric Tracking by Detection System: Radar Blob and Camera Fusion

作者: Francisco A.R. Alencar , Luis Alberto Rosero , Carlos Massera Filho , Fernando S. Osorio , Denis F. Wolf

DOI: 10.1109/LARS-SBR.2015.59

关键词: Computer scienceRadar engineering detailsLow probability of intercept radarFire-control radarRadar imagingRadar trackerRadarRadar lock-onArtificial intelligenceComputer visionMan-portable radar

摘要: This article proposes a system that fuses radar and monocular vision sensor data in order to detect and classify on-road obstacles, like cars or not cars (other obstacles). The obstacle detection process and classification is divided into three stages, the first consist in reading radar signals and capturing the camera data, the second stage is the data fusion, and the third step is the classify the obstacles, aiming to differentiate the obstacles types identified by the radar and confirmed by the computer vision. In the detection task it is important to locate …

参考文章(23)
Zhengping Ji, D. Prokhorov, Radar-vision fusion for object classification international conference on information fusion. pp. 1- 7 ,(2008)
Rodrigo Benenson, Markus Mathias, Radu Timofte, Luc Van Gool, Fast stixel computation for fast pedestrian detection international conference on computer vision. ,vol. 7585, pp. 11- 20 ,(2012) , 10.1007/978-3-642-33885-4_2
Rodrigo Benenson, Mohamed Omran, Jan Hosang, Bernt Schiele, Ten Years of Pedestrian Detection, What Have We Learned? european conference on computer vision. pp. 613- 627 ,(2014) , 10.1007/978-3-319-16181-5_47
Leandro C. Fernandes, Jefferson R. Souza, Gustavo Pessin, Patrick Y. Shinzato, Daniel Sales, Caio Mendes, Marcos Prado, Rafael Klaser, André Chaves Magalhães, Alberto Hata, Daniel Pigatto, Kalinka Castelo Branco, Valdir Grassi, Fernando S. Osorio, Denis F. Wolf, CaRINA Intelligent Robotic Car: Architectural design and applications Journal of Systems Architecture. ,vol. 60, pp. 372- 392 ,(2014) , 10.1016/J.SYSARC.2013.12.003
Thorsten Luettel, Michael Himmelsbach, Hans-Joachim Wuensche, Autonomous Ground Vehicles—Concepts and a Path to the Future Proceedings of the IEEE. ,vol. 100, pp. 1831- 1839 ,(2012) , 10.1109/JPROC.2012.2189803
Peter Kontschieder, Samuel Rota Bulo, Marcello Pelillo, Horst Bischof, Structured Labels in Random Forests for Semantic Labelling and Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 36, pp. 2104- 2116 ,(2014) , 10.1109/TPAMI.2014.2315814
D.T. Linzmeier, M. Skutek, M. Mekhaiel, K.C.J. Dietmayer, A pedestrian detection system based on thermopile and radar sensor data fusion international conference on information fusion. ,vol. 2, ,(2005) , 10.1109/ICIF.2005.1592003
P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian Detection: An Evaluation of the State of the Art IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 34, pp. 743- 761 ,(2012) , 10.1109/TPAMI.2011.155
Rubel Biswas, Arif Khan, Md Zahangir Alom, Mumit Khan, None, Night mode prohibitory traffic signs detection international conference on informatics electronics and vision. pp. 1- 5 ,(2013) , 10.1109/ICIEV.2013.6572589
Xiao Wang, Linhai Xu, Hongbin Sun, Jingmin Xin, Nanning Zheng, Bionic vision inspired on-road obstacle detection and tracking using radar and visual information international conference on intelligent transportation systems. pp. 39- 44 ,(2014) , 10.1109/ITSC.2014.6957663