II-VI Resonant Cavity Light Emitting Diodes for the Mid-Infrared

作者: J. Bleuse , E. Hadji , N. Magnea , J.-L. Pautrat

DOI: 10.1007/978-94-009-0313-5_33

关键词: Quantum wellActive layerDistributed Bragg reflectorInfraredOptoelectronicsEmission spectrumLight-emitting diodeQuantum efficiencyMaterials scienceFull width at half maximum

摘要: A CdHgTe low-Q resonant cavity light emitting diode is proposed as a new infrared source. The device consists of bottom Bragg reflector, half-wavelength containing an active layer at the antinode position, n-doped with indium on one end and p-doped nitrogen other, 0.95 reflectance top gold mirror which also serves ohmic contact. emission spectra room temperature show narrow peak, full width half maximum (FWHM) much less than natural peak FWHM quantum wells. directivity shown to be improved by effect. external efficiency (EQE) reaches 2 • 10-4 3.2 µm 2.5 4.1 µm. Infrared emitters in 3–5 wavelength range can therefore benefit from enhanced spectral, spatial characteristics microcavities.

参考文章(22)
E Fred Schubert, Y‐H Wang, AY Cho, L‐W Tu, GJ Zydzik, None, Resonant cavity light‐emitting diode Applied Physics Letters. ,vol. 60, pp. 921- 923 ,(1992) , 10.1063/1.106489
B. Jensen, A. Torabi, Linear and nonlinear intensity dependent refractive index of Hg1−xCdxTe Journal of Applied Physics. ,vol. 54, pp. 5945- 5949 ,(1983) , 10.1063/1.331770
K. Bacher, B. Pezeshki, S. M. Lord, J. S. Harris, Molecular beam epitaxy growth of vertical cavity optical devices with in situ corrections Applied Physics Letters. ,vol. 61, pp. 1387- 1389 ,(1992) , 10.1063/1.107546
P Tang, M J Pullin, S J Chung, C C Phillips, R A Stradling, A G Norman, Y B Li, L Hart, 4-11 mu m infrared emission and 300 K light emitting diodes from arsenic-rich InAs1-xSbx strained layer superlattices Semiconductor Science and Technology. ,vol. 10, pp. 1177- 1180 ,(1995) , 10.1088/0268-1242/10/8/023
N. E. J. Hunt, E. F. Schubert, R. A. Logan, G. J. Zydzik, Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant‐cavity light‐emitting diode Applied Physics Letters. ,vol. 61, pp. 2287- 2289 ,(1992) , 10.1063/1.108489
U. Keller, G. R. Jacobovitz‐Veselka, J. E. Cunningham, W. Y. Jan, B. Tell, K. F. Brown‐Goebeler, G. Livescu, Microcavity enhanced vertical‐cavity light‐emitting diodes Applied Physics Letters. ,vol. 62, pp. 3085- 3087 ,(1993) , 10.1063/1.109143
P. Bouchut, High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy HgCdTe layers Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 9, pp. 1794- 1798 ,(1991) , 10.1116/1.585801
C. Lei, C. J. Pinzone, Z. Huang, D. L. Huffaker, D. G. Deppe, R. D. Dupuis, Room temperature spontaneous emission in five‐micron‐long Fabry–Pérot vertical cavities Journal of Applied Physics. ,vol. 73, pp. 3153- 3157 ,(1993) , 10.1063/1.352984
W. Dobbelaere, J. de Boeck, C. Bruynseraede, R. Mertens, G. Borghs, InAsSb light emitting diodes and their applications to infra-red gas sensors Electronics Letters. ,vol. 29, pp. 890- 891 ,(1993) , 10.1049/EL:19930594
E Monterrat, L Ulmer, N Magnea, H Mariette, J L Pautrat, K Kheng, F Fuchs, Optical spectroscopy of CdHgTe/CdTe quantum wells and superlattices Semiconductor Science and Technology. ,vol. 8, ,(1993) , 10.1088/0268-1242/8/1S/057