Biodegradable silk catheters for the delivery of therapeutics across anatomical repair sites.

作者: Joseph E. Brown , Lorenzo Tozzi , Benjamin Schilling , Arta Kelmendi-Doko , April B. Truong

DOI: 10.1002/JBM.B.34140

关键词: Fat graftingSILKAdipose tissueBiomedical engineeringFabrication methodsTransplanted tissueDrug deliveryIn patientMaterials scienceImplantation Site

摘要: Biodegradable silk catheters for the delivery of therapeutics are designed with a focus on creating porous gradients that can direct release molecules away from implantation site. Though suitable range applications, these drug to transplanted adipose tissue in patients having undergone fat grafting procedure. A common complication grafts is rapid reabsorption large volume transplants. In order prolong retention, biodegradable be embedded into deliver nutrients, growth factors or improve adipocyte viability, proliferation, and ultimately extend retention. Two fabrication methods developed: gel-spinning technique, which uses novel flash-freezing step induce high porosity throughout bulk tube, dip-coating process using protein solutions doped water soluble porogen. Increased aids diffusion through tube controllable way. Additionally, we interface tubes ALZET osmotic pumps subcutaneous nude mouse model. The work described herein will discuss processing parameters as well interfacing between pump cargo therapeutic resulting profiles. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. Biomater 107B: 501-510, 2019.

参考文章(25)
Jie Li, J. Lowry Curley, Z. Elizabeth Floyd, Xiying Wu, Yuan Di C. Halvorsen, Jeffrey M. Gimble, Isolation of Human Adipose-Derived Stem Cells from Lipoaspirates Methods of Molecular Biology. ,vol. 702, pp. 17- 27 ,(2011) , 10.1007/978-1-4939-7799-4_13
Amy E. Thurber, Fiorenzo G. Omenetto, David L. Kaplan, In vivo bioresponses to silk proteins Biomaterials. ,vol. 71, pp. 145- 157 ,(2015) , 10.1016/J.BIOMATERIALS.2015.08.039
Arta Kelmendi-Doko, Kacey G. Marra, Natasa Vidic, Huaping Tan, J. Peter Rubin, Adipogenic Factor-Loaded Microspheres Increase Retention of Transplanted Adipose Tissue Tissue Engineering Part A. ,vol. 20, pp. 2283- 2290 ,(2014) , 10.1089/TEN.TEA.2012.0701
Isabella Pallotta, Michael Lovett, David L. Kaplan, Alessandra Balduini, Three-Dimensional System for the In Vitro Study of Megakaryocytes and Functional Platelet Production Using Silk-Based Vascular Tubes Tissue Engineering Part C-methods. ,vol. 17, pp. 1223- 1232 ,(2011) , 10.1089/TEN.TEC.2011.0134
Evangelia Bellas, Bruce J.B. Panilaitis, Dean L. Glettig, Carl A. Kirker-Head, James J. Yoo, Kacey G. Marra, J. Peter Rubin, David L. Kaplan, Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds Biomaterials. ,vol. 34, pp. 2960- 2968 ,(2013) , 10.1016/J.BIOMATERIALS.2013.01.058
Joseph Brown, Chia-Li Lu, Jeannine Coburn, David L. Kaplan, Impact of silk biomaterial structure on proteolysis Acta Biomaterialia. ,vol. 11, pp. 212- 221 ,(2015) , 10.1016/J.ACTBIO.2014.09.013
Yehuda Ullmann, Michael Hyams, Yitzchak Ramon, Dvora Beach, Isaac J. Peled, Ella S. Lindenbaum, Enhancing the survival of aspirated human fat injected into nude mice Plastic and Reconstructive Surgery. ,vol. 101, pp. 1940- 1944 ,(1998) , 10.1097/00006534-199806000-00026
Yoshikazu Mikami, Mio Lee, Seiko Irie, Masaki J. Honda, Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells Journal of Cellular Physiology. ,vol. 226, pp. 739- 748 ,(2011) , 10.1002/JCP.22392
Michael L. Lovett, Christopher M. Cannizzaro, Gordana Vunjak-Novakovic, David L. Kaplan, Gel spinning of silk tubes for tissue engineering. Biomaterials. ,vol. 29, pp. 4650- 4657 ,(2008) , 10.1016/J.BIOMATERIALS.2008.08.025
Jelena Rnjak-Kovacina, Lindsay S. Wray, Kelly A. Burke, Tess Torregrosa, Julianne M. Golinski, Wenwen Huang, David L. Kaplan, Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. ACS Biomaterials Science & Engineering. ,vol. 1, pp. 260- 270 ,(2015) , 10.1021/AB500149P